For the modeling of large deformations in multibody dynamics problems, the absolute nodal coordinate formulation (ANCF) is advantageous since in general, the ANCF leads to a constant mass matrix. The proposed ANCF beam finite elements in this approach use the transverse slope vectors for the parameterization of the orientation of the cross section and do not employ an axial nodal slope vector. The geometric description, the degrees of freedom, and a continuum-mechanics-based and a structural-mechanics-based formulation for the elastic forces of the beam finite elements, as well as their usage in several static problems, have been presented in a previous work. A comparison to results provided in the literature to analytical solution and to the solution found by commercial finite element software shows accuracy and high order convergence in statics. The main subject of the present paper is to show the usability of the beam finite elements in dynamic and buckling applications.

References

References
1.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
): pp.
339
348
.10.1023/A:1009740800463
2.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
New York.
3.
Ibrahimbegović
,
A.
,
1995
, “
On Finite Element Implementation of Geometrically Nonlinear Reissner's Beam Theory: Three-Dimensional Curved Beam Elements
,”
Comput. Meth. Appl. Mech. Eng.
,
122
, pp.
11
26
.10.1016/0045-7825(95)00724-F
4.
Gerstmayr
,
J.
, and
Matikainen
,
M. K.
,
2006
, “
Analysis of Stress and Strain in the Absolute Nodal Coordinate Formulation
,”
Mech. Based Des. Struct. Mach.
,
34
, pp.
409
430
.10.1080/15397730601044895
5.
Sugiyama
,
H.
,
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Deformation Modes in the Finite Element Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
298
, pp.
1129
1149
.10.1016/j.jsv.2006.06.037
6.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three-Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(4), pp.
606
613
.10.1115/1.1410100
7.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three-Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
(4), pp.
614
621
.10.1115/1.1410099
8.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
, pp.
53
74
.10.1023/B:NODY.0000014552.68786.bc
9.
Gerstmayr
,
J.
,
Matikainen
M. K.
,
Mikkola
,
A. M.
“A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation,”
Journal of Multibody System Dynamics
20
: pp.
359
-
384
,
2008
.10.1007/s11044-008-9125-3
10.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem. Part I
,”
Comput. Meth. Appl. Mech. Eng.
,
49
, pp.
55
70
.10.1016/0045-7825(85)90050-7
11.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Meth. Appl. Mech. Eng.
,
58
, pp.
79
116
.10.1016/0045-7825(86)90079-4
12.
Schwarze
,
M.
, and
Reese
,
S.
,
2009
, “
A Reduced Integration Solid-Shell Finite Element Based on the EAS and the ANS Concept—Geometrically Linear Problems
,”
Int. J. Numer. Meth. Eng.
,
80
, pp.
1322
1355
.10.1002/nme.2653
13.
Frischkorn
,
J.
, and
Reese
,
S.
,
2012
, “
A Novel Solid-Beam Finite Element for the Simulation of Nitinol Stents
,”
Proceedings of the ECCOMAS 2012 European Congress on Computational Methods on Applied Sciences and Engineering
,
Vienna, Austria
.
14.
Schwarze
,
M.
, and
Reese
,
S.
,
2011
, “
A Reduced Integration Solid-Shell Finite Element Based on the EAS and the ANS Concept—Large Deformation Problems
,”
Int. J. Numer. Meth. Eng.
,
85
, pp.
289
329
.10.1002/nme.2966
15.
Betsch
,
P.
, and
Steinmann
,
P.
,
2002
, “
Frame-Indifferent Beam Finite Elements Based Upon the Geometrically Exact Beam Theory
,”
Int. J. Numer. Meth. Eng.
,
54
, pp.
1775
1788
.10.1002/nme.487
16.
Betsch
,
P.
,
2005
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems: Part I: Holonomic Constraints
,”
Comput. Meth. Appl. Mech. Eng.
,
194
(
50–52
), pp.
5159
5190
.10.1016/j.cma.2005.01.004
17.
Betsch
,
P.
, and
Leyendecker
,
S.
,
2006
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems: Part II: Multibody Dynamics
,”
Int. J. Numer. Meth. Eng.
,
67
, pp.
499
552
.10.1002/nme.1639
18.
Humer
,
A.
,
Reischl
,
D.
, and
Gerstmayr
,
J.
,
2012
, “
Investigations on the Application of Energy-Momentum Schemes to Modally-Reduced Multibody Systems
,”
Proceedings of the IMSD2012, The 2nd Joint International Conference on Multibody System Dynamics
,
Stuttgart, Germany
, May 29–June 1.
19.
Schwab
,
A. L.
, and
Meijard
,
J. P.
,
2010
, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Classical Finite Element Formulation and Absolute Nodal Coordinate Formulation
,”
ASME J. Computat. Nonlin. Dyn.
,
5
(
1
), pp.
1
10
.
20.
Nachbagauer
,
K.
,
Gruber
,
P.
, and
Gerstmayr
,
J.
,
2013
, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples
,”
Computat. Nonlin. Dyn.
,
8
(
2
), p.
021004
.
21.
Argyris
,
J. H.
,
Balmer
,
H.
,
Doltsinis
,
J. S.
,
Dunne
,
P. C.
,
Haase
,
M.
,
Kleiber
,
M.
,
Malejannakis
,
G. A.
,
Mlejenek
,
J. P.
,
Muller
,
M.
, and
Scharpf
,
D. W.
,
1979
, “
Finite Element Method—The Natural Approach
,”
Comput. Meth. Appl. Mech. Eng.
,
17–18
, pp.
1
106
.10.1016/0045-7825(79)90083-5
22.
Sugiyama
,
H.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
,
2003
, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
31
, pp.
167
195
.10.1023/A:1022082826627
23.
Sugiyama
,
H.
, and
Yamashita
,
H.
,
2001
, “
Spatial Joint Constraints for the Absolute Nodal Coordinate Formulation Using the Non-Generalized Intermediate Coordinates
,”
Multibody Syst. Dyn.
,
26
, pp.
15
36
.10.1007/s11044-010-9236-5
24.
Nachbagauer
,
K.
,
Pechstein
,
A.
,
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2011
, “
A New Locking-Free Formulation for Planar, Shear Deformable, Linear and Quadratic Beam Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
245
263
.10.1007/s11044-011-9249-8
25.
Hodges
,
D. H.
,
2006
,
Nonlinear Composite Beam Theory
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
You do not currently have access to this content.