The modeling and simulation of flexible multibody systems containing fluid-conveying pipes are considered. It is assumed that the mass-flow rate is prescribed and constant and the pipe cross section is piecewise uniform. An existing beam element capable of handling large motions is modified to include the effect of the fluid flow and the initial curvature of the pipe. The modified element is incorporated in a finite-element based multibody system dynamics program, which takes care of the connection with other parts of the system and the simulation. The element is applied in several test problems: the buckling of a simply supported pipe, the flutter instability of a cantilever pipe, and the motion of a curved pipe that can rotate about an axis perpendicular to its plane. As a three-dimensional example, a Coriolis mass-flow rate meter with a U-shaped pipe is considered.

References

References
1.
Païdoussis
,
M. P.
,
1998
,
Fluid–Structure Interactions: Slender Structures and Axial Flow
, Vol.
1
,
Elsevier
,
New York
.
2.
Benjamin
,
T. B.
,
1961
, “
Dynamics of a System of Articulated Pipes Conveying Fluid I. Theory
,”
Proc. R. Soc. London, Ser. A
,
261
, pp.
457
486
.10.1098/rspa.1961.0090
3.
Benjamin
,
T. B.
,
1961
, “
Dynamics of a System of Articulated Pipes Conveying Fluid II. Experiments
,”
Proc. R. Soc. London, Ser. A
,
261
, pp.
487
499
.10.1098/rspa.1961.0091
4.
Irschik
,
H.
, and
Holl
,
H. J.
,
2002
, “
The Equations of Lagrange Written for a Non-Material Volume
,”
Acta Mech.
,
153
, pp.
231
248
.10.1007/BF01177454
5.
Gregory
,
R. W.
, and
Païdoussis
,
M. P.
,
1966
, “
Unstable Oscillation of Tubular Cantilevers Conveying Fluid I. Theory
,”
Proc. R. Soc. London, Ser. A
,
293
, pp.
512
527
.10.1098/rspa.1966.0187
6.
Gregory
,
R. W.
, and
Païdoussis
,
M. P.
,
1966
, “
Unstable Oscillation of Tubular Cantilevers Conveying Fluid II. Experiments
,”
Proc. R. Soc. London, Ser. A
,
293
, pp.
528
542
.10.1098/rspa.1966.0188
7.
Bajaj
,
A. K.
, and
Sethna
,
P. R.
,
1984
, “
Flow Induced Bifurcations to Three-Dimensional Oscillatory Motions in Continuous Tubes
,”
SIAM J. Appl. Math.
,
44
, pp.
270
286
.10.1137/0144020
8.
Stangl
,
M.
,
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2009
, “
A Large Deformation Planar Finite Element for Pipes Conveying Fluid Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
4
, p.
031009
.10.1115/1.3124091
9.
Sultan
,
G.
, and
Hemp
,
J.
,
1989
, “
Modelling of the Coriolis Mass Flowmeter
,”
J. Sound Vib.
,
132
, pp.
473
489
.10.1016/0022-460X(89)90640-8
10.
Mehendale
,
A.
,
2008
, “
Coriolis Mass Flow Rate Meters for Low Flows
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
11.
Meijaard
,
J. P.
,
1996
, “
Validation of Flexible Beam Elements in Dynamics Programs
,”
Nonlinear Dyn.
,
9
, pp.
21
36
.10.1007/BF01833291
12.
Jonker
,
J. B.
, and
Meijaard
,
J. P.
,
2013
, “
A Geometrically Non-Linear Formulation of a Three-Dimensional Beam Element for Solving Large Deflection Multibody System Problems
,”
Int. J. Non-Linear Mech.
,
53
, pp.
63
74
.10.1016/j.ijnonlinmec.2013.01.012
13.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko's Beam Theory
,”
ASME J. Appl. Mech.
,
33
(2), pp.
335
340
.10.1115/1.3625046
14.
Jonker
,
J. B.
, and
Meijaard
,
J. P.
,
1990
, “
SPACAR—Computer Program for Dynamic Analysis of Flexible Spatial Mechanisms and Manipulators
,”
Multibody Systems Handbook
,
W.
Schiehlen
, ed.,
Springer-Verlag
,
Heidelberg, Germany
, pp.
123
143
.
15.
Jonker
,
J. B.
,
Aarts
,
R. G. K. M.
, and
van Dijk
,
J.
,
2009
, “
A Linearized Input–Output Representation of Flexible Multibody Systems for Control Synthesis
,”
Multibody Syst. Dyn.
,
21
, pp.
99
122
.10.1007/s11044-008-9130-6
16.
Pratap
,
R.
,
2006
,
Getting Started with MATLAB 7: A Quick Introduction for Scientists and Engineers
,
Oxford University
,
New York
.
17.
Cheesewright
,
R.
, and
Shaw
,
S.
,
2006
, “
Uncertainties Associated With Finite Element Modelling of Coriolis Mass Flow Meters
,”
Flow Meas. Instrum.
,
17
, pp.
335
347
.10.1016/j.flowmeasinst.2006.07.003
18.
Feynman
,
R. P.
,
1985
, “
Surely You're Joking, Mr. Feynman!”: Adventures of a Curious Character
,
Norton
,
New York
.
19.
Païdoussis
,
M. P.
,
1997
, “
Fluid–Structure Interactions Between Axial Flows and Slender Structures
,”
Proceedings of the 19th International Congress of Theoretical and Applied Mechanics
,
T.
Tatsumi
,
E.
Watanabe
, and
T.
Kambe
, eds.,
Kyoto
,
Japan
, Aug. 25–31,
1996
, Elsevier, Amsterdam, pp.
427
442
.
20.
Hamel
,
G.
,
1949
,
Theoretische Mechanik, eine einheitliche Einführung in die gesamte Mechanik
,
Springer-Verlag
,
Berlin
.
21.
Samer
,
G.
, and
Fan
,
S.-C.
,
2010
, “
Modeling of Coriolis Mass Flow Meter of a General Plane-Shape Pipe
,”
Flow Meas. Instrum.
,
21
, pp.
40
47
.10.1016/j.flowmeasinst.2009.11.004
22.
Misra
,
A. K.
,
Païdoussis
,
M. P.
, and
Van
,
K. S.
,
1988
, “
On the Dynamics of Curved Pipes Transporting Fluid. Part I: Inextensible Theory
,”
J. Fluids Struct.
,
2
, pp.
221
244
.10.1016/S0889-9746(88)80009-4
23.
Misra
,
A. K.
,
Païdoussis
,
M. P.
, and
Van
,
K. S.
,
1988
, “
On the Dynamics of Curved Pipes Transporting Fluid. Part II: Extensible Theory
,”
J. Fluids Struct.
,
2
, pp.
245
261
.10.1016/S0889-9746(88)80010-0
You do not currently have access to this content.