This paper presents an approach to control design for flexible structures based on the transfer matrix method (TMM). The approach optimizes the closed-loop pole locations while working directly on the infinite-dimensional TMM model. The approach avoids spatial discretization, eliminating the possibility of modal spillover. The design strategy is based on an iterative process of optimizing the closed-loop pole locations using a Nelder-Mead simplex algorithm and then performing hardware-in-the-loop experiments to see how the pole locations are affecting the closed-loop step response. The evolution of the cost function used to optimized the pole locations is discussed. Contour plots (three dimensional Bode plots) in the complex s-plane are used to visualize the pole locations. A computationally efficient methodology for finding the closed-loop pole locations during the optimization is presented. The technique is applied to a single-flexible-link robot and experimental results show that the optimization procedure improves upon an initial, Bode-based compensator design, leading to a lower settling time.

References

References
1.
Book
,
W. J.
,
1984
, “
Recursive Lagrangian Dynamics of Flexible Manipulator Arms
,”
Int. J. Robotics Res.
,
3
(
3
), pp.
87
101
.10.1177/027836498400300305
2.
De Luca
,
A.
, and
Siciliano
,
B.
,
1991
, “
Closed-Form Dynamic-Model of Planar Multilink Lightweight Robots
,”
IEEE Trans. Syst. Man Cybern.
,
21
(
4
), pp.
826
839
.10.1109/21.108300
3.
Brüls
,
O.
,
Duysinx
,
P.
, and
Golinval
,
J.
,
2007
, “
The Global Modal Parameterization for Non-Linear Model-Order Reduction in Flexible Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
69
(
5
), pp.
948
977
.10.1002/nme.1795
4.
Brüls
,
O.
,
Duysinx
,
P.
, and
Golinval
,
J.
,
2005
, “
A Unified Finite Element Framework for the Dynamic Analysis of Controlled Flexible Mechanisms
,”
Proc. of the ECCOMAS Conf. on Advances in Computational Multibody Dynamics
.
5.
Banerjee
,
J. R.
,
1997
, “
Dynamic Stiffness Formulation for Structural Elements: A General Approach
,”
Comput. Struct.
,
63
(
1
), pp.
101
103
.10.1016/S0045-7949(96)00326-4
6.
Banerjee
,
J. R.
, and
Fisher
,
S. A.
,
1992
, “
Coupled Bending-Torsional Dynamic Stiffness Matrix for Axially Loaded Beam Elements
,”
Int. J. Numer. Methods Eng.
,
33
, pp.
739
751
.10.1002/nme.1620330405
7.
Dwivedy
,
S.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, A Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.10.1016/j.mechmachtheory.2006.01.014
8.
Krauss
,
R. W.
, and
Book
,
W. J.
,
2010
, “
Transfer Matrix Modeling of Systems With Noncollocated Feedback
,”
ASME J. Dyn. Syst., Meas. Control
,
132
(
6
), p.
061301
.10.1115/1.4002476
9.
Pestel
,
E. C.
, and
Leckie
,
F. A.
,
1963
,
Matrix Methods in Elastomechanics
,
McGraw Hill
,
New York.
10.
Book
,
W. J.
, and
Majette
,
M. W.
,
1983
, “
Controller Design for Flexible, Distributed Parameter Mechanical Arms Via Combined State Space and Frequency Domain Techniques
,”
ASME J. Dyn. Syst., Meas., Control
,
105
(
4
), pp.
245
254
.10.1115/1.3140666
11.
Kumar
,
A.
, and
Sankar
,
T.
,
1986
, “
A New Transfer Matrix Method for Response Analysis of Large Dynamic Systems
,”
Comput. Struct.
,
23
(
4
), pp.
545
552
.10.1016/0045-7949(86)90097-0
12.
Rui
,
X.
,
He
,
B.
,
Lu
,
Y.
,
Lu
,
W.
, and
Wang
,
G.
,
2005
, “
Discrete Time Transfer Matrix Method for Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
14
(
3
), pp.
317
344
.10.1007/s11044-005-5006-1
13.
Rui
,
X.
,
Wang
,
G.
,
Lu
,
Y.
, and
Yun
,
L.
,
2008
, “
Transfer Matrix Method for Linear Multibody System
,”
Multibody Syst. Dyn.
,
19
(
3
), pp.
179
207
.10.1007/s11044-007-9092-0
14.
He
,
B.
,
Rui
,
X.
, and
Wang
,
G.
,
2007
, “
Riccati Discrete Time Transfer Matrix Method for Elastic Beam Undergoing Large Overall Motion
,”
Multibody Syst. Dyn.
,
18
(
4
), pp.
579
598
.10.1007/s11044-007-9063-5
15.
Rui
,
X.
,
He
,
B.
,
Rong
,
B.
,
Wang
,
G.
, and
Lu
,
Y.
,
2009
, “
Discrete Time Transfer Matrix Method for Dynamics of a Multirigid-Flexible-Body System Moving in Plane
,”
Proc. Inst. Mech. Eng.
,
223
(
1
), pp.
23
42
.
16.
Rong
,
B.
,
Rui
,
X.
,
Wang
,
G.
, and
Yang
,
F.
,
2010
, “
Discrete Time Transfer Matrix Method for Dynamics of Multibody System With Real-Time Control
,”
J. Sound Vib.
,
329
, pp.
627
643
.10.1016/j.jsv.2009.09.034
17.
Krauss
,
R. W.
, and
Book
,
W. J.
,
2007
, “
A Python Software Module for Automated Identification of Systems Modeled with the Transfer Matrix Method
,”
IMECE, 2007. Proceedings of the 2007, ASME
.
18.
Krauss
,
R.
,
2012
, “
Computationally Efficient Modeling of Flexible Robots Using the Transfer Matrix Method
,”
J. Vib. Control
,
18
(
5
), pp.
596
608
.10.1177/1077546311408466
19.
Franklin
,
G. F.
,
Powell
,
J. D.
, and
Emami-Naeini
,
A.
,
2006
, “
Feedback Control of Dynamics Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.