In this investigation, a numerical procedure for modeling sliding and nonsliding joint constraints for the B-spline thin plate element is developed for the large deformation analysis of multibody systems. A concept of intermediate reference coordinates proposed for the absolute nodal coordinate formulation is generalized for B-spline elements such that a wide variety of joint constraints can be modeled using existing joint constraint libraries already implemented in multibody dynamics codes. This procedure allows for modeling sliding joints for B-spline elements that requires a solution to moving boundary problems by introducing time-variant surface parameters in the B-spline parametric domain. Since surface parameters treated as knot variables in the basis function are defined in the entire parametric domain rather than the element domain, the location of the constraint definition point can be determined without knowing in which elements the sliding point is located. Furthermore, using the B-spline recurrence formula, control points used for describing the constraint equations can be systematically extracted. It is shown that many types of nonsliding joints fixed on the flexible body can also be modeled as a special case of the sliding joint formulation developed in this investigation, leading to a unified joint constraint formulation for B-spline elements. Several numerical examples are presented in order to demonstrate the use of the numerical procedure developed in this investigation.

References

References
1.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
Cambridge University Press
,
New York
.
2.
Sanborn
,
G. G.
, and
Shabana
,
A. A.
,
2009
, “
On the Integration of Computer Aided Design and Analysis Using the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
22
, pp.
81
197
.10.1007/s11044-009-9157-3
3.
Lan
,
P.
, and
Shabana
,
A. A.
,
2010
, “
Integration of B-Spline Geometry and ANCF Finite Element Analysis
,”
Nonlin. Dyn.
,
61
, pp.
193
206
.10.1007/s11071-009-9641-6
4.
Yamashita
,
H.
, and
Sugiyama
,
H.
,
2012
, “
Numerical Convergence of Finite Element Solutions of Non-Rational B-Spline Element and Absolute Nodal Coordinate Formulation
,”
Nonlin. Dyn.
,
67
, pp.
177
189
.10.1007/s11071-011-9970-0
5.
Mikkola
,
A.
, and
Shabana
,
A.
,
2012
, “
Comparison Between ANCF and B-Spline Surfaces
,”
Proceedings of the Second Joint International Conference on Multibody System Dynamics
,
Stuttgart, Germany
.
6.
Hughes
,
T. J. R.
,
Cottrell
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Meth. Appl. Mech. Eng.
,
194
, pp.
4135
4195
.10.1016/j.cma.2004.10.008
7.
Cottrell
,
J. A.
,
Hughes
T. J. R.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
Wiley
,
United Kingdom
.
8.
Piegl
,
L. A.
, and
Tiller
,
W.
,
1996
,
The NURBS Book
,
Springer
,
Berlin
.
9.
Shabana
,
A. A.
,
Hamed
,
A. M.
,
Mohamed
,
A. N. A.
,
Jayakumar
,
P.
, and
Letherwood
,
M. D.
,
2012
, “
Use of B-Spline in the Finite Element Analysis: Comparison With ANCF Geometry
,”
ASME J. Computat. Nonlin. Dyn.
,
7
(1), p.
011008
.10.1115/1.4004377
10.
Dmitrochenko
,
O.
, and
Pogorelov
,
D. Y.
,
2003
, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
10
, pp.
17
43
.10.1023/A:1024553708730
11.
Shabana
,
A. A.
,
2008
,
Computational Continuum Mechanics
,
Cambridge University Press
,
New York
.
12.
Hughes
,
T. J. R.
,
Reali
,
A.
, and
Sangalli
,
G.
,
2010
, “
Efficient Quadrature for NURBS-Based Isogeometric Analysis
,”
Comput. Meth. Appl. Mech. Eng.
,
199
, pp.
301
313
.10.1016/j.cma.2008.12.004
13.
Sugiyama
,
H.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
,
2003
, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates
,”
Nonlin. Dyn.
,
31
, pp.
167
195
.10.1023/A:1022082826627
14.
Bauchau
,
O. A.
, and
Bottasso
,
C. L.
,
2001
, “
Contact Conditions for Cylindrical, Prismatic, and Screw Joints in Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
5
, pp.
251
278
.10.1023/A:1011461223706
15.
Sugiyama
,
H.
, and
Yamashita
,
H.
,
2011
, “
Spatial Joint Constraints for the Absolute Nodal Coordinate Formulation Using the Non-Generalized Intermediate Coordinates
,”
Multibody Syst. Dyn.
,
26
, pp.
15
36
.10.1007/s11044-010-9236-5
16.
Bae
,
B. S.
,
Han
,
J. M.
, and
Choi
,
J. H.
,
2000
, “
An Implementation Method for Constrained Flexible Multibody Dynamics Using a Virtual Body and Joint
,”
Multibody Syst. Dyn.
,
4
, pp.
297
315
.10.1023/A:1009832426396
You do not currently have access to this content.