In this paper, an efficient numerical method for solving the fractional delay differential equations (FDDEs) is considered. The fractional derivative is described in the Caputo sense. The proposed method is based on the derived approximate formula of the Laguerre polynomials. The properties of Laguerre polynomials are utilized to reduce FDDEs to a linear or nonlinear system of algebraic equations. Special attention is given to study the error and the convergence analysis of the proposed method. Several numerical examples are provided to confirm that the proposed method is in excellent agreement with the exact solution.

References

References
1.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
294
298
.10.1115/1.3167615
2.
Enelund
,
M.
, and
Josefson
,
B. L.
,
1997
, “
Time-Domain Finite Element Analysis of Viscoelastic Structures With Fractional Derivatives Constitutive Relations
,”
AIAA J.
,
35
(
10
), pp.
1630
1637
.10.2514/2.2
3.
Diethelm
,
K.
,
1997
, “
An Algorithm for the Numerical Solution of Differential Equations of Fractional Order
,”
Electron. Trans. Numer. Anal.
,
5
, pp.
1
6
.
4.
He
,
J. H.
,
2011
, “
A Short Remark on Fractional Variational Iteration Method
,”
Phys. Lett. A
,
375
(
38
), pp.
3362
3364
.10.1016/j.physleta.2011.07.033
5.
He
,
J. H.
,
1999
, “
Homotopy Perturbation Technique
,”
Comput. Methods Appl. Mech. Eng.
,
178
(
3–4
), pp.
257
262
.10.1016/S0045-7825(99)00018-3
6.
Khabibrakhmanov
,
I. Z.
, and
Summers
,
D.
,
1998
, “
The Use of Generalized Laguerre Polynomials in Spectral Methods for Non-Linear Differential Equations
,”
Comput. Math. Appl.
,
36
, pp.
65
70
.10.1016/S0898-1221(98)00117-5
7.
Khader
,
M. M.
,
2011
, “
On the Numerical Solutions for the Fractional Diffusion Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
2535
2542
.10.1016/j.cnsns.2010.09.007
8.
Khader
,
M. M.
,
2012
, “
Introducing an Efficient Modification of the VIM by Using Chebyshev Polynomials
,”
Appl. Appl. Math.
,
7
(
1
), pp.
283
299
.
9.
Ramadan
,
M. A.
, and
Sharif
,
M. N.
,
2006
, “
Numerical Solution of System of First Order Delay Differential Equations Using Spline Functions
,”
Int. J. Comput. Math.
,
83
(
12
), pp.
925
937
.10.1080/00207160601138889
10.
Samko
,
S.
,
Kilbas
,
A.
, and
Marichev
,
O.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach
,
London
.
11.
Sweilam
,
N. H.
,
Khader
,
M. M.
, and
Al-Bar
,
R. F.
,
2007
, “
Numerical Studies for a Multi-Order Fractional Differential Equation
,”
Phys. Lett. A
,
371
, pp.
26
33
.10.1016/j.physleta.2007.06.016
12.
Sweilam
,
N. H.
,
Khader
,
M. M.
, and
Nagy
,
A. M.
,
2011
, “
Numerical Solution of Two Sided Space Fractional Wave Equation Using Finite Difference Method
,”
Comput. Appl. Math.
,
235
, pp.
2832
2841
.10.1016/j.cam.2010.12.002
13.
Sweilam
,
N. H.
,
Khader
,
M. M.
, and
Mahdy
,
A. M. S.
,
2012
, “
Numerical Studies for Fractional-Order Logistic Differential Equation With Two Different Delays
,”
J. Appl. Math.
,
2012
, pp.
1
14
.10.1155/2012/764894
14.
Bell
,
W. W.
,
1968
,
Special Functions for Scientists and Engineers
,
Butler and Tanner Ltd
,
Frome, London
15.
Canuto
,
C.
,
Hnssalni
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
1988
,
Spectral Methods in Fluid Dynamics
,
Springer-Verlag
,
New York
.
16.
Funaro
,
D.
,
1992
,
Polynomial Approximation of Differential Equations
,
Springer-Verlag
,
New York
.
17.
Ramadan
,
M. A.
,
2005
, “
Spline Solution of First Order Delay Differential Equation
,”
J. Egypt. Math. Soc.
,
1
, pp.
7
18
.
18.
Khader
,
M. M.
, and
Hendy
,
A. S.
,
2012
, “
The Approximate and Exact Solutions of the Fractional-Order Delay Differential Equations Using Legendre Pseudospectral Method
,”
Int. J. Pure Appl. Math.
,
74
(
3
), pp.
287
297
.
19.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
New York
,
1999
.
20.
Michalska
,
M.
, and
Szynal
,
J.
,
2001
, “
A New Bound for the Laguerre Polynomials
,”
J. Comput. Appl. Math.
,
133
, pp.
489
493
.10.1016/S0377-0427(00)00670-1
21.
Wang
,
L.
, and
Guo
,
B.
,
2006
, “
Stair Laguerre Pseudospectral Method for Differential Equations on the Half Line
,”
Adv. Comput. Math.
,
25
, pp.
305
322
.10.1007/s10444-003-7608-6
22.
Askey
,
R.
, and
Gasper
,
G.
,
1977
, “
Convolution Structures for Laguerre Polynomials
,”
J. Anal. Math.
,
31
, pp.
48
68
.10.1007/BF02813297
23.
Khader
,
M. M.
,
El Danaf
,
T. S.
, and
Hendy
,
A. S.
,
2012
, “
Efficient Spectral Collocation Method for Solving Multi-Term Fractional Differential Equations Based on the Generalized Laguerre Polynomials
,”
Fractional Calculus Appl.
,
3
(
13
), pp.
1
14
.10.1142/SCNC
24.
Lewandowski
,
Z.
, and
Szynal
,
J.
,
1998
, “
An Upper Bound for the Laguerre Polynomials
,”
J. Comput. Appl. Math.
,
99
, pp.
529
533
.10.1016/S0377-0427(98)00181-2
You do not currently have access to this content.