Proper initialization of fractional-order operators has been an ongoing problem, particularly in the application of Laplace transforms with correct initialization terms. In the last few years, a history-function-based initialization along with its corresponding Laplace transform has been presented. Alternatively, an infinite-dimensional state-space representation along with its corresponding Laplace transform has also been presented. The purpose of this paper is to demonstrate that these two approaches to the initialization problem for fractional-order operators are equivalent and that the associated Laplace transforms yield the correct initialization terms and can be used in the solution of fractional-order differential equations.

References

References
1.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
1998
, “
Insights Into the Initialization of Fractional Order Operators via Semi-Infinite Lines
,”
NASA TM –1998-208407
.
2.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
1998
, “
Initialization, Conceptualization, and Application in the Generalized Fractional Calculus
,”
NASA TP-1998-208415
.
3.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
1999
, “
The Vector Linear Fractional Initialization Problem
,”
NASA TP-1999-208919
.
4.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2000
, “
Initialized Fractional Calculus
,”
Int. J. Appl. Math.
,
3
(
3
), pp.
249
266
.
5.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2000
, “
Initialized Fractional Calculus
,”
NASA TP –2000-209943
.
6.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2001
, “
Initialization in Fractional Order Systems
,”
European Control Conference
, September 4–7,
Porto, Portugal
.
7.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2002
, “
Control of Initialized Fractional-Order Systems
,”
NASA TM-2002-211377
.
8.
Hartley
,
T. T.
, and
Carl
F.
Lorenzo
,
C. F.
,
2002
, “
Dynamics and Control of Initialized Fractional-Order Systems
,”
J. Nonlinear Dyn.
,
29
(
1–4
), pp.
201
233
.10.1023/A:1016534921583
9.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2002
, “
Variable Order and Distributed Order Fractional Operators
,”
NASA TM-2002-211376
.
10.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2002
, “
Variable Order and Distributed Order Fractional Operators
,”
J. Nonlinear Dyn.
,
29
(
1–4
), pp.
57
98
.10.1023/A:1016586905654
11.
Narahari Achar
,
B. N.
,
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2003
, “
Initialization and the Caputo Fractional Derivative
,”
NASA TM-2003-212482
.
12.
Narahari Achar
,
B. N.
,
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2005
, “
Initialization Issues of the Caputo Fractional Derivative
,”
Proceedings of DETC/CIE 2005, ASME Int. Design Engineering Technical Conference
,
Long Beach CA
, Sept. 24–28, DETC2005-84348.
13.
Narahari Achar
,
B. F.
,
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2007
, “
The Caputo Fractional Derivative: Initialization Issues Relative to Fractional Differential Equations
Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering
,
J.
Sabatier
,
O. P.
Agrwal
, and
J. A.
Tenreiro Machado
, eds.,
Springer
, Netherlands.
14.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2007
, “
Initialization of Fractional Differential Equations: Background and Theory
,”
Proceedings of ASME International Design Engineering Technical Conference
,
Las Vegas, NV
, Sept. 4–7, DETC2007-34810.
15.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2007
, “
Initialization of Fractional Differential Equations: Theory and Application
,”
Proceedings of ASME International Design Engineering Technical Conference
,
Las Vegas, NV
, Sept. 4–7, DETC2007-43814.
16.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2007
, “
Application of Incomplete Gamma Functions to the Initialization of Fractional-Order Systems
,”
Proceedings of ASME International Design Engineering Technical Conference
,
Las Vegas, NV
, Sept. 4–7, DETC2007-35843.
17.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2008
, “
Initialization of Fractional-Order Operators and Fractional Differential Equations
ASME J. Computat. Nonlinear Dyn.
,
3
(
2
), p.
021101
.10.1115/1.2833585
18.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2008
, “
Application of Incomplete Gamma Functions to the Initialization of Fractional-Order Systems
,”
ASME J. Computat. Nonlinear Dyn.
,
3
(
2
), p.
021103
.10.1115/1.2833480
19.
Lorenzo
,
C. F.
,
Hartley
,
T. T.
, and
Adams
,
J. L.
,
2008
, “
Inverted Initialization of Fractional-Order Derivatives
,”
Proceedings of IFAC Workshop on Fractional Differentiation and Its Applications
,
Ankara, Turkey
, Nov. 5–7.
20.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
, eds.,
2009
, “
Initialization, Conceptualization, and Application in the Generalized Fractional Calculus
,”
Preface and Text, Crit. Rev. Biomed. Eng.
,
35
(
6
), pp.
447
553
(Republication of NASA/TP-1998-208415).10.1615/CritRevBiomedEng.v35.i6.10
21.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2009
, “
on Self-Consistent Operators With Application to Operators of Fractional Order
,”
Proceedings of ASME International Design Engineering Technical Conference
,
San Diego, CA
, Aug. 30-Sept. 2, DETC2009-86730.
22.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2009
, “
The Initialization Response of Linear Fractional-Order Systems With Constant History Function
,”
Proceedings of ASME International Design Engineering Technical Conference
,
San Diego, CA
, Aug. 30–Sept. 2, DETC2007-87631.
23.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2009
, “
The Initialization Response of Linear Fractional-Order Systems With Ramp History Functions
,”
Proceedings of ASME International Design Engineering Technical Conference
,
San Diego, CA
, Aug. 30–Sept. 2, DETC2007-87643.
24.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2009
, “
The Error Incurred Using the Caputo-Derivative Laplace Transform
,”
Proceedings of ASME International Design Engineering Technical Conference
,
San Diego, CA
, Aug. 30–Sept. 2, DETC2007-87648.
25.
Lorenzo
,
C. F.
,
Hartley
,
T. T.
and
Adams
,
J. L.
,
2009
, “
The Inverted Initialization Problem for Fractional-Order Derivatives
,”
Physica Scripta
,
T136
, p.
014029
.10.1088/0031-8949/2009/T136/014029
26.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
, and
Adams
,
J. L.
,
2010
, “
A Simple Approximation to the Complementary Incomplete Gamma Function With Application to the Initialization Response of Linear Fractional-Order Systems
,”
4th IFAC Workshop on Fractional Differentiation and its Applications
,
Badajoz, Spain
, Oct. 18–20.
27.
Lorenzo
,
C. F.
, and
Hartley
,
T. T.
,
2011
, “
Time-Varying Initialization and Laplace Transform of the Caputo Derivative: With Order Between Zero and One
,”
Proceedings of ASME International Design Engineering Technical Conference
, August 28–31,
Washington, DC
, Paper DETC2011-47396.
28.
Gambone
,
T.
,
Hartley
,
T. T.
,
Lorenzo
,
C. F.
,
Adams
,
J. L.
, and
Veillette
,
R. J.
,
2011
, “
An Experimental Validation of the Time-Varying Initialization Response in Fractional-Order Systems
,”
Proceedings of ASME International Design Engineering Technical Conference
, August 28–31,
Washington, DC
, Paper DETC2011-47250.
29.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2011
, “
The Initialization Response of Multi-Term Linear Fractional-Order Systems With Constant History Functions
,”
Proceedings of ASME International Design Engineering Technical Conference
, August 28–31,
Washington, DC
, Paper DETC2011-48016.
30.
Benchellal
,
A.
,
2008
, “
Modélisation des interfaces de diffusion à l'Aide d'Opérateurs d'Intégration Fractionnaires
,”
Thèse de Doctorat
,
Université de Poitiers
,
France
.
31.
Lin
,
J.
,
Poinot
,
T.
, and
Trigeassou
,
J. C.
,
2000
, “
Parameter Estimation of Fractional Systems: Application to the Modelling of a Lead-Acid Battery
,”
12th IFAC Symposium on System Identification, SYSID 2000
.
32.
Lin
,
J.
,
2001
, “
Modélisation et Identification des Systèmes d'Ordre non Entire
,”
Thèse de Doctorat
,
Université de Poitiers
,
France
.
33.
Lin
,
J.
,
Poinot
,
T.
, and
Trigeassou
,
J. C.
,
2001
, “
Parameter Estimation of Fractional Systems. Application to Heat Transfer
,”
European Control Conference (ECC)
,
Porto, Portugal
, pp.
2644
2649
.
34.
Poinot
,
T.
, and
Trigeassou
,
J. C.
,
2002
, “
Parameter Estimation of Fractional Models: Application to the Modelling of Diffusive Systems
,”
15th IFAC World Congress
,
Barcelona, Spain
.
35.
Poinot
,
T.
, and
Trigeassou
,
J. C.
,
2003
, “
A Method for Modelling and Simulation of Fractional Systems
,”
Signal Process.
,
83
, pp.
2319
2333
.10.1016/S0165-1684(03)00185-3
36.
Trigeassou
,
J. C.
,
Poinot
,
T.
,
Lin
,
J.
,
Oustaloup
,
A.
, and
Levron
,
F.
,
1999
, “
Modelling and Identification of a Non Integer Order System
,”
ECC’99 European Control Conference
,
Karlsruhe, Germany
.
37.
Trigeassou
,
J. C.
,
Benchellal
,
A.
,
Maamri
,
N.
, and
Poinot
,
T.
,
2009
, “
A New Approach to the Stability of Fractional Differential Equations
,”
Trans. Syst. Signal. Dev.
,
4
(
1
), pp.
1
26
.
38.
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2009
, “
State-Space Modelling of Fractional Differential Equations and the Initial Condition Problem
,”
IEEE SSD’09
,
Djerba, Tunisia
.
39.
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2010
, “
The Initial Conditions of Riemman–Liouville and Caputo Derivatives: An Integrator Interpretation
,”
FDA’2010 Conference
, October,
Badajoz, Spain
.
40.
Trigeassou
,
J. C.
, and
Maamri
,
N.
,
2011
, “
Initial Conditions and Initialization of Linear Fractional Differential equations
,”
Signal Process.
,
91
(
3
), pp.
427
436
.10.1016/j.sigpro.2010.03.010
41.
Trigeassou
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.10.1016/j.sigpro.2010.04.024
42.
Trigeassou
J. C.
, and
Oustaloup
,
A.
,
2011
, “
Fractional Integration: A Comparative Analysis of Fractional Integrators
,”
IEEE SSD’11
,
Sousse, Tunisia
.
43.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2011
, “
Initialization of Riemann–Liouville and Caputo Fractional Derivatives
,”
Proceedings of IDETC/CIE FDTA’2011 Conference
, August,
Washington DC
.
44.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2011
, “
Automatic Initialization of the Caputo Fractional Derivative
,”
CDC-ECC 2011
,
Orlando, FL
, December.
45.
Trigeassou
,
J. C.
,
2012
, “
State Variables, Initial Conditions and Transients of Fractional Order Derivatives and Systems
,”
FDA’2012
,
Nanjing, China
, May.
46.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Benchellal
,
A.
, and
Oustaloup
,
A.
,
2012
, “
Experimental Validation of the Fractional Order Initialisation Technique With a Heat Transfer System
,”
FDA’12
,
China
, May.
47.
Trigeassou
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2012
, “
Transients of Fractional Order Integrator and Derivatives
,”
Signal Image Vid. Proc.
,
6
(
3
), pp.
359
372
.10.1007/s11760-012-0332-2
48.
Trigeassou
,
J. C.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2012
, “
State Variables and Transients of Fractional Order Differential Systems
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3117
3140
.10.1016/j.camwa.2012.03.099
49.
Sabatier
,
J.
Merveillaut
,
M.
,
Malti
,
R.
, and
Oustaloup
,
A.
,
2008
, “
on a Representation of Fractional Order Systems: Interests for the Initial Condition Problem
,”
3rd IFAC Workshop, FDA’08
,
Ankara, Turkey
, November 5–7.
50.
Sabatier
,
J.
,
Merveillaut
,
M.
,
Feneteau
,
L.
, and
Oustaloup
,
A.
,
2009
, “
On Observability of Fractional Order Systems
,”
Proceedings of the ASME IDET-CIE Conferences
San Diego, CA
.
51.
Sabatier
,
J.
,
Merveillaut
,
M.
,
Malti
,
R.
, and
Oustaloup
,
A.
,
2010
, “
How to Impose Physically Coherent Initial Conditions to a Fractional System?
,”
Commun. Nonlinear Sci.
,
15
(
5
), 1318–1326.
52.
Sabatier
,
J.
,
Farges
,
C.
,
Merveillaut
,
M.
, and
Feneteau
L.
,
2012
, “
Observability and Pseudo State Estimation of Fractional Order System
,”
Eur. J. Control
,
3
, pp.
260
271
.10.3166/ejc.18.260-271
53.
Ortigueira
,
M. D.
,
2003
, “
On the Initial Conditions in Continuous-Time Fractional Linear Systems
,”
Signal Process.
,
83
, pp.
2301
2309
.10.1016/S0165-1684(03)00183-X
54.
Ortigueira
,
M. D.
, and
Coito
,
F. J.
,
2008
, “
Initial Conditions: What Are We Talking About?
,”
3rd IFAC Workshop, FDA’08
,
Ankara, Turkey
, November 5–8.
55.
Du
,
M.
, and
Wang
,
Z.
,
2001
, “
Initialized Fractional Differential Equations With Riemann–Liouville Fractional Order Derivative
,”
ENOC 2011 Conference
,
Rome, Italy
, July.
56.
Fukunaga
,
M.
, and
Shimizu
,
N.
,
2004
, “
Role of Prehistories in the Initial Value Problems of Fractional Viscoelastic Equations
,”
Nonlinear Dyn.
,
38
, pp.
207
220
.10.1007/s11071-004-3756-6
57.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
San Diego
.
58.
Roberts
,
G. E.
, and
Kaufman
,
H.
,
1966
,
Table of Laplace Transforms
,
W. B. Saunders Co.
Philadelphia, PA.
You do not currently have access to this content.