The main contribution of this paper is to demonstrate the feasibility of using one computational environment for developing accurate geometry as well as performing the analysis of detailed biomechanics models. To this end, the finite element (FE) absolute nodal coordinate formulation (ANCF) and multibody system (MBS) algorithms are used in modeling both the contact geometry and ligaments deformations in biomechanics applications. Two ANCF approaches can be used to model the rigid contact surface geometry. In the first approach, fully parameterized ANCF volume elements are converted to surface geometry using parametric relationship that reduces the number of independent coordinate lines. This parametric relationship can be defined analytically or using a spline function representation. In the second approach, an ANCF surface that defines a gradient deficient thin plate element is used. This second approach does not require the use of parametric relations or spline function representations. These two geometric approaches shed light on the generality of and the flexibility offered by the ANCF geometry as compared to computational geometry (CG) methods such as B-splines and NURBS (Non-Uniform Rational B-Splines). Furthermore, because B-spline and NURBS representations employ a rigid recurrence structure, they are not suited as general analysis tools that capture different types of joint discontinuities. ANCF finite elements, on the other hand, lend themselves easily to geometric description and can additionally be used effectively in the analysis of ligaments, muscles, and soft tissues (LMST), as demonstrated in this paper using the knee joint as an example. In this study, ANCF finite elements are used to define the femur/tibia rigid body contact surface geometry. The same ANCF finite elements are also used to model the MCL and LCL ligament deformations. Two different contact formulations are used in this investigation to predict the femur/tibia contact forces; the elastic contact formulation which allows for penetrations and separations at the contact points, and the constraint contact formulation in which the nonconformal contact conditions are imposed as constraint equations, and as a consequence, no separations or penetrations at the contact points are allowed. For both formulations, the contact surfaces are described in a parametric form using surface parameters that enter into the ANCF finite element geometric description. A set of nonlinear algebraic equations that depend on the surface parameters is developed and used to determine the location of the contact points. These two contact formulations are implemented in a general MBS algorithm that allows for modeling rigid and flexible body dynamics.

References

References
1.
Machado
,
M.
,
Flores
,
P.
,
Pimenta Claro
,
J. C.
,
Ambrosio
,
J.
,
Silva
,
M.
, and
Completo
,
A.
,
2010
, “
Development of a Planar Multibody Model of the Human Knee Joint
,”
Nonlinear Dyn.
,
60
(
3
), pp.
459
478
.10.1007/s11071-009-9608-7
2.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
, pp.
955
961
.10.1016/0021-9290(95)00149-2
3.
Bendjaballah
,
M. Z.
,
Shirazi-adl
,
A.
, and
Zukor
,
D. J.
,
1995
, “
Biomechanics of the Human Knee Joint in Compression: Reconstruction, Mesh Generation and Finite Element Analysis
,”
The Knee
,
2
(
2
), pp.
69
79
.10.1016/0968-0160(95)00018-K
4.
Donahue
,
T. L. H.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2002
, “
A Finite Element Model of the Human Knee Joint for the Study of Tibio-Femoral Contact
,”
ASME J. Biomech. Eng.
,
124
, pp.
273
280
.10.1115/1.1470171
5.
McLean
,
S. G.
,
Su
,
A.
, and
Van den Bogert
,
A. J.
,
2003
, “
Development and Validation of a 3-D Model to Predict Knee Joint Loading during Dynamic Movement
,”
ASME J. Biomech. Eng.
,
125
, pp.
864
874
.10.1115/1.1634282
6.
Bei
,
Y.
, and
Fregly
,
B.
,
2004
, “
Multibody Dynamic Simulation of the Knee Contact Mechanics
,”
J. Med. Eng. Phys.
,
26
, pp.
777
789
.10.1016/j.medengphy.2004.07.004
7.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
, pp.
1019
1031
.10.1016/0021-9290(91)90019-J
8.
Abdel-Rahman
,
E. M.
, and
Hefzy
,
M. S.
,
1998
, “
Biomechanics of the Human Knee Joint in Compression: Reconstruction, Mesh Generation and Finite Element Analysis Three-Dimensional Dynamic Behavior of the Human Knee Joint under Impact Loading
,”
Med. Eng. Phys.
,
20
, pp.
276
290
.10.1016/S1350-4533(98)00010-1
9.
Elias
,
J. J.
,
Wilson
,
D. R.
,
Adamson
,
R.
, and
Cosgarea
,
A. J.
,
2004
, “
Evaluation of a Computational Model Used to predict the Patella Femoral Contact Pressure Distribution
,”
J. Biomech.
,
37
, pp.
295
302
.10.1016/S0021-9290(03)00306-3
10.
Piazza
,
S. J.
, and
Delp
,
S. L.
,
2001
, “
Three-Dimensional Simulation of Total Knee Replacement Motion During a Step-Up Task
,”
ASME J. Biomech. Eng.
,
123
, pp.
599
606
.10.1115/1.1406950
11.
Engel
,
K.
,
Herpers
,
R.
, and
Hartmann
,
U.
,
2011
,
Biomechanical Computer Models, Theoretical Biomechanics
,
Vaclav Klika
, ed.,
In Tech
,
New York
.
12.
Guess
,
T. M.
,
Thiagarajan
,
G.
,
Kia
,
M.
, and
Mishra
,
M.
,
2010
, “
A Subject Specific Multibody Model of the Knee With Menisci
,”
Med. Eng. Phys.
,
32
(
5
), pp.
505
515
.10.1016/j.medengphy.2010.02.020
13.
Gantoi
,
F. M.
,
Brown
,
M. A.
, and
Shabana
,
A. A.
,
2010
, “
ANCF Finite Element/Multibody System Formulation of the Ligament/Bone Insertion Site Constraints
,”
ASME J Comput. Nonlinear Dyn.
,
5
(
3
), p.
031006
.10.1115/1.4001373
14.
Bartel
,
D. L.
,
Davy
,
D. T.
, and
Keaveny
,
T. M.
,
2006
,
Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems
,
Pearson
,
Delhi
.
15.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
, and
Sugiyama
,
H.
,
2008
,
Railroad Vehicle Dynamics: A Computational Approach
,
CRC Press
,
Boca Raton, FL
.
16.
Cheng
,
R. C. K.
,
Brown
,
T. D.
, and
Andrews
,
J. G.
,
1990
, “
Non-Uniqueness of the Bicompartmental Contact Force Solution in a Lumped-Parameter Mathematical Model of the Knee
,”
J. Biomech.
,
23
, pp.
353
355
.10.1016/0021-9290(90)90064-A
17.
Mohamed
,
A. A.
,
Brown
,
M.
, and
Shabana
,
A. A.
,
2010
, “
Study of the Ligament Tension and Cross-Section Deformation using Nonlinear Finite Element/Multibody System Algorithms
,”
Multibody Syst. Dyn.
,
23
, pp.
227
248
.10.1007/s11044-009-9181-3
18.
Weed
,
D.
,
Maqueda
,
L.
,
Brown
,
M.
, and
Shabana
,
A.
,
2008
, “
A Multibody/Finite Element Nonlinear Formulation of a Two-Ligament Knee Joint
,”
Proceedings of the 2008 ASME International Mechanical Engineering Congress and Exhibition
,
Boston, MA
, Oct. 31–Nov. 6, pp.
407
416
.
19.
Ashraf
,
T.
,
Beard
,
D. J.
, and
Newman
,
J. H.
,
2003
, “
Symmetrical vs. Asymmetrical Total Knee Replacement: A Medium Term Comparative Analysis
,”
The Knee
,
10
(
1
), pp.
61
66
.10.1016/S0968-0160(02)00088-1
20.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
21.
Sanborn
,
G. G.
, and
Shabana
,
A. A.
,
2009
, “
On the Integration of the Computer Aided Design and Analysis using the Finite Element Absolute Nodal Coordinate Formulation
,”
J. Multibody Syst. Dyn.
,
22
, pp.
181
197
.10.1007/s11044-009-9157-3
22.
Mikkola
,
A.
, and
Shabana
,
A. A.
,
2012
, “
Comparison Between ANCF and B-Spline Surfaces
,”
Proceedings of the Second Joint International Conference on Multibody System Dynamics
,
Stuttgart, Germany
, 29 May 29–June 1.
23.
Nordin
,
M.
, and
Frankel
,
V. H.
,
2001
,
Basic Biomechanics of the Musculoskeletal System
,
3rd ed.
,
Lippincott Williams & Willkins
,
Philadelphia, PA
.
24.
Kapandji
,
I. A.
,
1970
,
The Physiology of the Joints
,
Churchill Livingstone
,
Edinburgh, UK
.
25.
Leondes
,
C. T.
,
2007
,
Biomechanical Systems Technology, Vol. 1: Computational Methods
,
World Scientific Publishing Co. Pte. Ltd.
,
New York, USA
.
26.
Mow
,
V. C.
, and
Hayes
,
W. C.
,
1997
,
Basic Orthopedic Biomechanics
,
Lippincott-Raven Publishers
,
Philadelphia, PA
.
27.
Milner
,
C. E.
,
2008
,
Functional Anatomy for Sport and Exercise
,
Routledge
,
New York
.
28.
Kennedy
,
J. C.
,
Weinberg
,
H. W.
, and
Wilson
,
A. S.
,
1974
, “
The Anatomy and Function of the Anterior Cruciate Ligament
,”
J. Bone Jt. Surg.
,
56A
(
2
), pp.
223
235
.
29.
Amis
,
A. A.
,
Bull
,
A. M. J.
,
Gupte
,
C. M.
,
Hijazi
, I
.
, and
Robinson
,
J. R.
,
2003
, “
Biomechanics of the PCL and Related Structures: Postero-Lateral, Postero-Medial and Menisco-Femoral Ligaments
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
11
, pp.
271
281
.10.1007/s00167-003-0410-7
30.
Wang
,
C. J.
,
2002
, “
Injuries to the Posterior Cruciate Ligament and Posterolateral Instabilities of the Knee
,”
Chang Gung Med. J.
,
25
, pp.
288
297
.
31.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M. A.
, and
Doblaré
,
M.
,
2006
, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
,
39
(
9
), pp.
1686
1701
.10.1016/j.jbiomech.2005.04.030
32.
Vollebregt
,
E. A. H.
,
2008
, “
Survey of Programs on Contact Mechanics Developed by J. J. Kalker
,”
Veh. Syst. Dyn.
,
46
(
1
), pp.
85
92
.10.1080/00423110701586451
33.
Fung
,
Y. C.
,
1993
,
Biomechanics. Mechanical Properties of Living Tissues
,
2nd ed.
,
Springer-Verlag
,
New York
.
34.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
Cambridge, UK
.
35.
İşcan
,
M. Y.
,
2005
, “
Forensic Anthropology of Sex and Body Size, Forensic Science International
,”
Forensic Sci. Int.
,
147
(
2–3
), pp.
107
112
.10.1016/j.forsciint.2004.09.069
36.
Mommersteeg
,
T. J. A.
,
Blankevoort
,
L.
,
Huiskes
,
R.
,
Kooloos
,
J. G. M.
, and
Hendriks
J. C. M.
,
1994
, “
The Effect of Variable Relative Insertion Orientation of Human Knee Bone Ligament Bone Complexes on the Tensile Stiffness
,”
J. Biomech.
,
28
(
6
), pp.
745
752
.10.1016/0021-9290(94)00121-J
37.
Song
,
Y.
,
Debski
,
R. E.
,
Musahl
, V
.
,
Thomas
,
M.
, and
Woo
,
S. L.
,
2004
, “
A Three-Dimensional Finite Element Model of the Human Anterior Cruciate Ligament: A Computational Analysis with Experimental Validation
,”
J. Biomech.
,
37
, pp.
383
390
.10.1016/S0021-9290(03)00261-6
38.
Cheng
,
C. K.
,
1988
, “
A Mathematical Model for Predicting Bony Contact Forces and Muscles Forces at the Knee During the Human Gait
,” Ph.D. thesis, The University of Iowa, Iowa City, IA.
39.
Sasaki
,
K.
, and
Neptune
,
R. R.
,
2010
, “
Individual Muscle Contributions to the Axial Knee Joint Contact Force during Normal Walking
,”
J. Biomech.
,
43
, pp.
2780
2784
.10.1016/j.jbiomech.2010.06.011
You do not currently have access to this content.