We present a method for detecting right half plane (RHP) roots of fractional order polynomials. It is based on a Nyquist-like criterion with a system-dependent contour which includes all RHP roots. We numerically count the number of origin encirclements of the mapped contour to determine the number of RHP roots. The method is implemented in Matlab, and a simple code is given. For validation, we use a Galerkin based strategy, which numerically computes system eigenvalues (Matlab code is given). We discuss how, unlike integer order polynomials, fractional order polynomials can sometimes have exponentially large roots. For computing such roots we suggest using asymptotics, which provide intuition but require human inputs (several examples are given).

References

References
1.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional Order Systems and Control – Fundamentals and Applications
, Advanced Industrial Control Series,
Springer
,
Berlin
.
2.
Caponetto
,
R.
,
Dongola
,
G.
,
Fortuna
,
L.
, and
Petras
,
I.
,
2010
,
Fractional Order Systems: Modeling and Control Applications
,
World Scientific
,
Singapore
.
3.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications
,
Academic
,
San Diego
.
4.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2010
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1594
1609
.10.1016/j.camwa.2009.08.003
5.
Trigeassou
,
J. C.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.10.1016/j.sigpro.2010.04.024
6.
Trigeassou
,
J. C.
,
Benchellal
,
A.
,
Maamri
,
N.
, and
Poinot
,
T.
,
2009
, “
A Frequency Approach to the Stability of Fractional Differential Equations
,”
Trans. Syst. Signals Dev.
,
4
(
1
), pp.
1
26
.
7.
Ogata
,
K.
,
2001
,
Modern Control Engineering
,
4th ed.
,
Prentice Hall
,
Englewood Cliffs, NJ
.
8.
Bonnet
,
C.
, and
Partington
,
J. R.
,
2002
, “
Analysis of Fractional Delay Systems of Retarded and Neutral Type
,”
Automatica
,
38
, pp.
1133
1138
.10.1016/S0005-1098(01)00306-5
9.
Petras
,
I.
,
2009
, “
Stability of Fractional Order Systems With Rational Orders: A Survey
,”
Fract. Calc. Appl. Anal.
,
12
(
3
), pp.
269
298
.
10.
Buslowicz
,
M.
,
2008
, “
Stability of Linear Continuous-Time Fractional Order Systems With Delays of the Retarded Type
,”
Bull. Polish Acad. Sci. Techn. Sci.
,
56
(
4
), pp.
319
324
.
11.
Petras
,
I.
,
2011
, “
Stability Test Procedure for a Certain Class of the Fractional-Order Systems
,”
12th International Carpathian Control Conference (ICCC)
,
Velke Karlovice
, pp.
303
307
.
12.
Hwang
,
C.
, and
Cheng
,
Y.-C.
,
2006
, “
A Numerical Algorithm for Stability Testing of Fractional Delay Systems
,”
Automatica
,
42
(
5
), pp.
825
831
.10.1016/j.automatica.2006.01.008
13.
Chatterjee
,
A.
,
2005
, “
Statistical Origins of Fractional Derivatives in Viscoelasticity
,”
J. Sound Vib.
,
284
(
3–5
), pp.
1239
1245
.10.1016/j.jsv.2004.09.019
14.
Singh
,
S. J.
, and
Chatterjee
,
A.
,
2006
, “
Galerkin Projections and Finite Elements for Fractional Order Derivatives
,”
Nonlinear Dyn.
,
45
(
1–2
), pp.
183
206
.10.1007/s11071-005-9002-z
15.
Singh
,
S. J.
, and
Chatterjee
,
A.
,
2011
, “
Unified Galerkin- and DAE-Based Approximation of Fractional Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021010
.10.1115/1.4002516
16.
Das
,
S.
, and
Chatterjee
,
A.
,
2013
, “
Simple Recipe for Accurate Solution of Fractional Order Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
).10.1115/1.4023009
17.
Moornani
,
K. A.
, and
Haeri
,
M.
,
2010
, “
On Robust Stability of LTI Fractional Order Delay Systems of Retarded and Neutral Type
,”
Automatica
,
46
(
2
), pp.
362
368
.10.1016/j.automatica.2009.11.006
18.
Hinch
,
E. J.
,
1991
,
Perturbation Methods
,
Cambridge University Press
,
Cambridge
.
19.
Maamri
,
N.
,
Trigeassou
,
J. C.
, and
Mehdi
,
D.
,
2009
, “
A Frequency Approach to Analyze the Stability of Delayed Fractional Differential Equations
,”
Proceedings of the European Control Conference ECC
,
Budapest, Hungary
.
You do not currently have access to this content.