Intrinsic localized modes (ILMs) are investigated in an array with N Duffing oscillators that are weakly coupled with each other when each oscillator is subjected to sinusoidal excitation. The purpose of this study is to investigate the behavior of ILMs in nonlinear multi-degree-of-freedom (MDOF) systems. In the theoretical analysis, van der Pol's method is employed to determine the expressions for the frequency response curves for fundamental harmonic oscillations. In the numerical calculations, the frequency response curves are shown for N = 2 and 3 and compared with the results of the numerical simulations. Basins of attraction are shown for a two-oscillator array with hard-type nonlinearities to examine the possibility of appearance of ILMs when an oscillator is disturbed. The influences of the connecting springs for both hard- and soft-type nonlinearities on the appearance of the ILMs are examined. Increasing the values of the connecting spring constants may cause Hopf bifurcation followed by amplitude modulated motion (AMM) including chaotic vibrations. The influence of the imperfection of an oscillator is also investigated. Bifurcation sets are calculated to show the influence of the system parameters on the excitation frequency range of ILMs. Furthermore, time histories are shown for the case of N = 10, and many patterns of ILMs may appear depending on the initial conditions.

References

References
1.
Sievers
,
A. J.
, and
Takeno
,
S.
,
1988
, “
Intrinsic Localized Mode in Anharmonic Crystal
,”
Phys. Rev. Lett.
,
61
(
8
), pp.
970
973
.10.1103/PhysRevLett.61.970
2.
Flash
,
S.
, and
Willis
,
C. R.
,
1998
, “
Discrete Breathers
,”
Phys. Rep.
,
295
(
5
), pp.
181
264
.10.1016/S0370-1573(97)00068-9
3.
Campbell
,
D. K.
,
Flach
,
S.
, and
Kivshar
,
Y. S.
,
2004
, “
Localizing Energy Through Nonlinearity and Discreteness
,”
Phys. Today
,
57
(
1
), pp.
43
49
.10.1063/1.1650069
4.
Dauxois
,
T.
, and
Peyrard
,
M.
,
1993
, “
Discreteness Effects on the Formation and Propagation of Breathers in Nonlinear Klein-Gordon Equations
,”
Phys. Rev. E
,
48
(
6
), pp.
4768
4778
.10.1103/PhysRevE.48.4768
5.
Sato
,
M.
,
Hubbard
,
B. E.
,
Sievers
,
A. J.
,
Ilic
,
B.
,
Czaplewski
,
D. A.
, and
Craighead
,
H. G.
,
2003
,“
Observation of Locked Intrinsic Localized Vibrational Modes in a Micromechanical Oscillator Array
,”
Phys. Rev. Lett.
,
90
(
4
), p.
044102
.10.1103/PhysRevLett.90.044102
6.
Sato
,
M.
,
Hubbard
,
B. E.
,
English
,
L. Q.
, and
Sievers
,
A. J.
,
2003
, “
Study of Intrinsic Localized Vibrational Modes in Micromechanical Oscillator Arrays
,”
Chaos
,
13
(
2
), pp.
702
715
.10.1063/1.1540771
7.
Sato
,
M.
,
Hubbard
,
B. E.
, and
Sievers
,
A. J.
,
2006
, “
Colloquium: Nonlinear Energy Localization and Its Manipulation in Micromechanical Oscillator Arrays
,”
Rev. Modern Phys.
,
78
(
1
), pp.
137
157
.10.1103/RevModPhys.78.137
8.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
,
C. D.
, Jr
.,
2008
, “
Intrinsic Localized Modes in Microresonator Arrays and Their Relationship to Nonlinear Vibration Modes
,”
Nonlinear Dyn.
,
54
(
1,2
), pp.
13
29
.10.1007/s11071-007-9288-0
9.
Dick
,
A. J.
,
Balachandran
,
B.
, and
Mote
, Jr.,
C. D
,
2010
, “
Localization in Microresonator Arrays: Influence of Natural Frequency Tuning
,”
Trans. ASME J. Comput Nonlinear. Dyn.
5
(
1
), p.
11002
.10.1115/1.4000314
10.
Chen
,
Q. F.
,
Huang
,
L.
,
Lai
,
Y.-C.
, and
Dietz
,
D.
,
2009
, “
Dynamical Mechanism of Intrinsic Localized Modes in Microelectromechanical Oscillator Arrays
,”
Chaos
,
19
(
1
), p.
013127
.10.1063/1.3078706
11.
Vakakis
,
A. F.
, and
Cetinkaya
,
C.
,
1993
, “
Mode Localization in a Class of Multidegree-of-Freedom Nonlinear Systems With Cyclic Symmetry
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
265
282
.10.1137/0153016
12.
Vakakis
,
A.
,
Nayfeh
,
T.
, and
King
,
M.
,
1993
, “
A Multiple-Scales Analysis of Nonlinear, Localized Modes in a Cyclic Periodic System
,”
Trans. ASME, Appl. Mech.
,
60
(
2
), pp.
388
397
.10.1115/1.2900806
13.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1995
, “
A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Nonlinear Forced Localization
,”
Nonlinear Dyn.
,
7
(
1
), pp.
85
104
.
14.
Watanabe
,
Y.
,
Hamada
,
K.
, and
Sugimoto
,
N.
,
2007
, “
Localized Oscillations of a Spatially Periodic and Articulated Structure
,”
Wave Motion
,
45
(
1–2
), pp.
100
117
.10.1016/j.wavemoti.2007.04.005
15.
King
,
M. E.
,
Aubrecht
,
J.
, and
Vakakis
,
A. F.
,
1995
, “
Experimental Study of Steady-State Localization in Coupled Beams With Active Nonlinearities
,”
J. Nonlinear Sci.
,
5
(
6
), pp.
485
502
.10.1007/BF01209024
16.
Emad
,
J.
,
Vakakis
,
A. F.
, and
Miller
,
N.
,
2000
, “
Experimental Nonlinear Localization in a Periodically Forced Repetitive System of Coupled Magnetoelastic Beams
,”
Physica D
,
137
(
1–2
), pp.
192
201
.10.1016/S0167-2789(99)00176-1
17.
Kimura
,
M.
, and
Hikihara
,
T.
,
2009
, “
Coupled Cantilever Array With Tunable On-Site Nonlinearity and Observation of Localized Oscillations
,”
Phys. Lett. A
,
373
, pp.
1257
1260
.10.1016/j.physleta.2009.02.005
18.
Thakur
,
R. B.
,
English
,
L. Q.
, and
Sievers
,
A. J.
,
2008
, “
Driven Intrinsic Localized Modes in a Coupled Pendulum Array
,”
J. Phys. D
,
41
(
1
), p.
015503
.10.1088/0022-3727/41/1/015503
19.
Stoker
,
J. J.
,
2005
,
Nonlinear Vibrations
,
John Wiley & Sons
,
New York
.
20.
Brent
,
R. P.
,
1973
,
Algorithms for Minimization Without Derivatives
, Chapter 4,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Wolf
,
A.
,
Swift
,
J. B.
,
Swinney
,
H. L.
, and
Vastano
,
J. A.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Physica
,
16D
, pp.
285
317
.10.1016/0167-2789(85)90011-9
22.
Doedel
,
E. J.
,
Champneys
,
A. R.
,
Fairgrieve
,
T. F.
,
Kuznetsov
,
Y. A.
,
Sandstede
,
B.
, and
Wang
,
X.
,
1997
,
Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), AUTO97
,
Concordia University
,
Canada
.
You do not currently have access to this content.