This paper addresses the problems of the robust stability and stabilization for fractional order systems based on the uncertain Takagi-Sugeno fuzzy model. A sufficient and necessary condition of asymptotical stability for fractional order uncertain T-S fuzzy model is given, and a parallel distributed compensate fuzzy controller is designed to asymptotically stabilize the model. The results are obtained in terms of linear matrix inequalities. Finally, a numerical example and fractional order Van der Pol system are given to show the effectiveness of our results.

References

References
1.
Bagley
,
R. L.
, and
Calico
,
R. A.
,
1991
, “
Fractional Order State Equations For The Control of Viscoelastic Structures
,”
J. Guid. Control Dyn.
,
14
(
2
), pp.
304
311
.10.2514/3.20641
2.
Skaar
,
S. B.
,
Michel
,
A. N.
, and
Miller
,
R. K.
,
1988
, “
Stability of Viscoelastic Control Systems
,”
IEEE Trans. Automat. Control
,
33
(
4
), pp.
348
357
.10.1109/9.192189
3.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2002
, “
Dynamics and Control of Initialized Fractional-Order Systems
,”
Nonlinear Dyn.
,
29
(
1
), pp.
201
233
.10.1023/A:1016534921583
4.
Sun
,
H. H.
,
Abdelwahab
,
A. A.
, and
Onaral
,
B.
,
1984
, “
Linear Approximation of Transfer Function With a Pole of Fractional Order
,”
IEEE Trans. Automat. Control
,
29
(
5
), pp.
441
444
.10.1109/TAC.1984.1103551
5.
Goldberger
,
A. L.
,
Bhargava
,
V.
,
West
,
B. J.
, and
Mandell
,
A. J.
,
1985
, “
On a Mechanism of Cardiac Electrical Stability: The Fractal Hypothesis
,”
Biophys. J.
,
48
(
3
), pp.
525
528
.10.1016/S0006-3495(85)83808-X
6.
Hartley
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammar
,
H. K.
,
1995
, “
Chaos in a Fractional Order Chua System
”.
IEEE Trans. Circuits Syst.
,
42
(
8
), pp.
485
490
.10.1109/81.404062
7.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,” in
Computational Eng. in Sys. Appl. Proceedings, Vol. 2
, pp.
963
968
.
8.
Matignon
,
D.
,
1998
, “
Stability Properties for Generalized Fractional Differential Systems
,” in
ESAIM Proceedings, Vol. 5
, pp.
145
158
.
9.
Petras
,
I.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
, and
Podlubny
,
I.
,
2005
, “
Stability of Linear Time Invariant Systems With Interval Fractional Orders and Interval Coefficients
,” in
Proceedings of the International Conference on Comput. Cybern. (ICCC’04)
,
Vienna, Austria
, pp.
1
4
.
10.
Chen
,
Y. Q.
,
Ahn
,
H. S.
, and
Podlubny
,
I.
,
2006
, “
Robust Stability Check of Fractional Order Linear Time Invariant Systems With Interval Uncertainties
,”
Signal Process.
,
86
(
10
), pp.
2611
2618
.10.1016/j.sigpro.2006.02.011
11.
Ahn
,
H. S.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2007
, “
Robust Stability Test of A Class of Linear Time-Invariant Interval Fractional Order System Using Lyapunov Inequality
,”
Appl. Math. Comput.
,
187
(
1
), pp.
27
34
.10.1016/j.amc.2006.08.099
12.
Ahn
,
H. S.
, and
Chen
,
Y. Q.
,
2008
, “
Necessary and Sufficient Stability Condition of Fractional-Order Interval Linear Systems
,”
Automatica
,
44
(
11
), pp.
2985
2988
.10.1016/j.automatica.2008.07.003
13.
Lu
,
J. G.
, and
Chen
,
G. R.
,
2009
, “
Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach
,”
IEEE Trans. Automat. Control
,
54
(
6
), pp.
1294
1299
.10.1109/TAC.2009.2013056
14.
Lu
,
J. G.
, and
Chen
,
Y. Q.
,
2010
, “
Robust Stability and Stabilization of Fractional-Order Interval Systems With The Fractional Order
α
: The
0<α<1
Case
,”
IEEE Trans. Automat. Control
,
55
(
1
), pp.
152
158
.10.1109/TAC.2009.2033738
15.
Lazarevic
,
M. P.
,
2006
, “
Finite Time Stability Analysis of
PDα
Fractional Control of Robotic Time-Delay Systems
,”
Mech. Res. Commun.
,
33
(
2
), pp.
269
279
.10.1016/j.mechrescom.2005.08.010
16.
Zhang
,
X. Y.
,
2008
, “
Some Results of Linear Fractional Order Time-Delay System
,”
Appl. Math. Comput.
,
197
(
1
), pp.
407
411
.10.1016/j.amc.2007.07.069
17.
Lazarevic
,
M. P.
, and
Spasic
,
A. M.
,
2009
, “
Finite Time Stability Analysis of Fractional Order Time Delay Systems: Gronwall's Approach
,”
Math. Comput. Model.
,
49
(
3-4
), pp.
475
481
.10.1016/j.mcm.2008.09.011
18.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge
.
19.
Moze
,
M.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2005
, “
LMI Tools for Stability Analysis of Fractional Systems
,” in
IDETC/CIE2005 Proceedings
,
Long Beach, CA
, pp.
1611
1619
.
20.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2010
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1594
1609
.10.1016/j.camwa.2009.08.003
21.
Farges
,
C.
,
Moze
,
M.
, and
Sabatier
,
J.
,
2010
, “
Pseudo-State Feedback Stabilization of Commensurate Fractional Order Systems
,”
Automatica
,
46
(
10
), pp.
1730
1734
.10.1016/j.automatica.2010.06.038
22.
Lan
,
Y. H.
,
2012
, “
Observer-Based Robust Control of
α
(
0α<1
) Fractional-Order Uncertain Systems: A Linear Matrix Inequality Approach
,”
IET Control Theory A
,
6
, pp.
229
234
.10.1049/iet-cta.2010.0484
23.
Lan
,
Y. H.
, and
Zhou
,
Y.
,
2011
, “
LMI-Based Robust Control of Fractional-Order Uncertain Linear Systems
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1460
1471
.10.1016/j.camwa.2011.03.028
24.
Wang
,
Z.
,
Huang
,
X.
, and
Shen
,
H.
,
2012
, “
Control of an Uncertain Fractional Order Economic System via Adaptive Sliding Mode
,”
Neurocomputing
,
83
, pp.
83
88
.10.1016/j.neucom.2011.11.018
25.
Takagi
,
T.
, and
Sugeno
,
M.
,
1985
, “
Fuzzy Identification of Systems and Its Application to Modeling and Control
,”
IEEE Trans. Systems Man and Cybernetics
,
15
(
1
), pp.
116
132
.10.1109/TSMC.1985.6313399
26.
Tanaka
,
K.
, and
Sugeno
,
M.
,
1992
, “
Stability Analysis and Design of Fuzzy Control Systems
,”
Fuzzy Set. Syst.
,
45
(
2
), pp.
135
156
.10.1016/0165-0114(92)90113-I
27.
Lee
,
H. J.
,
Park
,
J. B.
, and
Chen
,
G.
,
2001
, “
Robust Fuzzy Control of Nonlinear Systems With Parametric Uncertainties
,”
IEEE Trans. Fuzzy Syst.
,
9
(
2
), pp.
369
379
.10.1109/91.919258
28.
Tanaka
,
K.
, and
Sano
,
M.
,
1996
, “
A Robust Stabilization Problem of Fuzzy Controller Systems and its Applications to Backing up Control of a Truck-Trailer
,”
IEEE Trans. Fuzzy Syst.
,
2
(
2
), pp.
119
134
.10.1109/91.277961
29.
Tian
,
E.
, and
Pang
,
C.
,
2006
, “
Delay-Dependent Stability Analysis and Synthesis of Uncertain T–S Fuzzy Systems With Time-Varying Delay
,”
Fuzzy Set. Syst.
,
157
(
4
), pp.
544
559
.10.1016/j.fss.2005.06.022
30.
Yoneyama
,
J.
,
2008
, “
New Delay-Dependent Approach to Robust Stability and Stabilization for Takagi–Sugeno Fuzzy Time-Delay Systems
,”
Fuzzy Set. Syst.
,
158
(
20
), pp.
2225
2237
.10.1016/j.fss.2007.03.022
31.
Han
,
Q. L.
, and
Gu
,
K. Q.
,
2001
, “
On Robust Stability of Time-Delay Systems With Norm Bounded Uncertainty
,”
IEEE Trans. Automat. Control
,
46
(
9
), pp.
1426
1431
.10.1109/9.948471
32.
Huang
,
H.
, and
Ho
,
D. W. C.
,
2007
,“
Delay-Dependent Robust Control of Uncertain Stochastic Fuzzy Systems With Time-Varying Delay
,”
IET Control Theory A
,
1
(
4
), pp.
1075
1085
.10.1049/iet-cta:20060313
33.
Liu
,
X.
, and
Zhang
,
H.
,
2008
, “
Delay-Dependent Robust Stability of Uncertain Fuzzy Large-Scale Systems With Time-Varying Delays
,”
Automatica
,
44
, pp.
193
198
.10.1016/j.automatica.2007.05.001
34.
Zhang
,
H.
,
Wang
,
Y.
, and
Liu
,
D.
,
2008
, “
Delay-Dependent Guaranteed Cost Control for Uncertain Stochastic Fuzzy Systems With Multiple Time Delays
,”
IEEE Trans. Syst. Man Cybern. Part B Cybern.
,
38
(
1
), pp.
126
140
.10.1109/TSMCB.2007.910532
35.
Feng
,
G.
,
2006
, “
A Survey on Analysis and Design of Model-Based Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
,
14
(
5
), pp.
676
697
.10.1109/TFUZZ.2006.883415
36.
Zheng
,
Y. G.
,
Nian
,
Y. B.
, and
Wang
,
D. J.
,
2010
, “
Controlling Fractional Order Chaotic Systems Based on Takagi-Sugeno Fuzzy Model and Adaptive Adjustment Mechanism
,”
Phys. Lett. A
,
375
(
21
), pp.
125
129
.10.1016/j.physleta.2010.10.038
37.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego
.
38.
Xie
,
L. H.
,
1996
, “
Output Feedback
H
Control of Systems With Parameter Uncertainty
,”
Int. J. Control
,
63
(
4
), pp.
741
750
.10.1080/00207179608921866
39.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn.
,
29
(
1-4
), pp.
3
22
.10.1023/A:1016592219341
You do not currently have access to this content.