To improve the computational efficiency of nonlinear dynamic probabilistic analysis for aeroengine typical components, an extremum response surface method based on the support vector machine (SVM ERSM) was proposed in this paper. The basic principle was introduced and the mathematical model was established for the SVM ERSM. The probabilistic analysis of turbine casing radial deformation was taken as an example to validate the SVM ERSM considering the influences of nonlinear material property and dynamic heat loads. The results of probabilistic analysis imply that the distribution features of random parameters and the major factors are gained for more accurate the design of casing radial deformation. The SVM ERSM offers a feasible and valid method, which possesses high efficiency and high precision in the nonlinear dynamic probabilistic analysis. Moreover, the SVM ERSM is promising to provide an useful insight for casing dynamic optimal design and the blade-tip clearance control of aeroengine high pressure turbine.

References

References
1.
Lattime
,
S. B.
, and
Steinetz
,
B. M.
,
2004
, “
High Pressure Turbine Clearance Control System: Current Practices and Future Directions
,”
J. Propul. Power
,
20
(
2
), pp.
302
311
.10.2514/1.9255
2.
Annette
,
E. N.
,
Christoph
,
W. M.
, and
Stephan
,
S.
,
2005
, “
Modeling and Validation of the Thermal Effects on Gas Turbine Transients
,”
J. Eng. Gas Turbines Power
,
127
(
3
), pp.
564
572
.10.1115/1.1850495
3.
Kypuros
,
J. A.
, and
Melcher
,
K. J.
,
2003
, “
A Reduced Model for Prediction of Thermal and Rotational Effects on Turbine Tip Clearance
,” NASA/TM-2003-212226, March; see also URL http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20030032933%5F2003026900.pdf
4.
Gurvich
,
M. R.
, and
Pipes
,
R. B.
,
1996
, “
Probabilistic Strength Analysis of Four-Directional Laminated Composites
,”
Compos. Sci. Technol.
,
56
(
6
), pp.
649
656
.10.1016/0266-3538(96)00048-6
5.
Fitzpatrick
,
C. K.
,
Baldwin
,
M. A.
,
Rullkoetter
,
P. J.
,
Laz
,
P. J.
,
2011
, “
Combined Probabilistic and Principal Component Analysis Approach for Multivariate Sensitivity Evaluation and Application to Implanted Patellofemoral Mechanics
,”
J. Biomech.
,
44
(
1
), pp.
13
21
.10.1016/j.jbiomech.2010.08.016
6.
Alessandro
,
Z.
,
Michele
,
B.
,
Andrea
,
D. A.
,
Luigino
,
D.
,
2010
, “
Probabilistic Analysis for Design Assessment of Continuous Steel-Concrete Composite Girders
,”
J. Construct. Steel Res.
,
66
(
7
), pp.
897
905
.10.1016/j.jcsr.2010.01.015
7.
Pietrzyk
,
K.
, and
Hagentoft
,
C.
,
2008
, “
Probabilistic Analysis of Air Infiltration in Low-Rise Buildings
,”
Building and Environment
,
43
(
4
), pp.
537
549
.10.1016/j.buildenv.2007.01.024
8.
Nakamura
,
T.
, and
Fujii
,
K.
,
2006
, “
Probabilistic Transient Thermal Analysis of an Atmospheric Reentry Vehicle Structure
,”
Aerospace Sci. Technol.
,
10
(
4
), pp.
346
354
.10.1016/j.ast.2006.02.002
9.
Hu
,
D. Y.
,
Wang
,
R. Q.
, and
Tao
,
Z.
,
2011
, “
Probabilistic Design for Turbine Disk at High Temperature
,”
Aircraft Eng. Aerospace Technol.
,
83
(
4
), pp.
199
207
.10.1108/00022661111138602
10.
Murat
,
E. K.
,
Hasan
,
B. B.
, and
Alemdar
,
B.
,
2011
, “
Probabilistic Nonlinear Analysis of CFR Dams by MCS Using Response Surface Method
,”
Appl. Math. Model.
,
35
(
6
), pp.
2752
2770
.10.1016/j.apm.2010.12.003
11.
,
Q.
, and
Low
,
B. K.
,
2011
, “
Probabilistic Analysis of Underground Rock Excavations Using Response Surface Method and SORM
,”
Comput. Geotech.
,
38
(
8
), pp.
1008
1021
.10.1016/j.compgeo.2011.07.003
12.
Mollon
,
G.
,
Dias
,
D.
, and
Soubra
,
A. H.
,
2011
, “
Probabilistic Analysis of Pressurized Tunnels Against Face Stability Using Collocation Based Stochastic Response Surface Method
,”
J. Geotech. Geoenviron. Eng.
,
137
(
4
), pp.
385
397
.10.1061/(ASCE)GT.1943-5606.0000443
13.
Bucher
,
C. G.
, and
Bourgund
,
U.
,
1990
, “
A Fast and Efficient Response Surface Approach for Structural Reliability Problems
,”
Struct. Safety
,
7
(
1
), pp.
57
66
.10.1016/0167-4730(90)90012-E
14.
Rajashekhar
,
M. R.
, and
Ellingwood
,
B. R.
,
1993
, “
A New Look at the Response Surface Approach for Reliability Analysis
,”
Struct. Safety
,
12
(
3
), pp.
205
220
.10.1016/0167-4730(93)90003-J
15.
Kim
,
S.
, and
Na
,
S.
,
1997
, “
Response Surface Method Using Vector Projected Sampling Points
,”
Struct. Safety
,
19
(
1
), pp.
3
19
.10.1016/S0167-4730(96)00037-9
16.
Guan
,
X. L.
, and
Melchers
,
R. E.
,
2001
, “
Effect of Response Surface Parameter Variation on Structural Reliability Estimates
,”
Struct. Safety
,
23
(
4
), pp.
429
444
.10.1016/S0167-4730(02)00013-9
17.
Li
,
H. S.
, and
Lu
,
Z. Z.
,
2007
, “
Support Vector Regression for Structural Reliability Analysis
,”
Acta Aeronaut. Astronaut. Sin.
,
28
(
1
), pp.
94
99
. Available at http://hkxb.buaa.edu.cn/EN/abstract/abstract9032.shtml
18.
Tan
,
X. H.
,
Bi
,
W. H.
,
Hou
,
X. L.
,
Wei
,
W.
,
2011
, “
Reliability Analysis Using Radial Basis Function Networks and Support Vector Machines
,”
Comput. Geotech.
,
38
(
2
), pp.
178
186
.10.1016/j.compgeo.2010.11.002
19.
Guo
,
Z. W.
, and
Bai
,
G. C.
,
2009
, “
Application of Least Squares Support Vector Machine for Regression to Reliability Analysis
,”
Chin. J. Aeronaut.
,
22
(
2
), pp.
160
166
.10.1016/S1000-9361(08)60082-5
20.
Moura
,
M. C.
,
Zio
,
E.
,
Lins
,
L. D.
,
Droguett
,
E.
,
2011
, “
Failure and Reliability Prediction by Support Vector Machines Regression of Time Series Data
,”
Reliab. Eng. Syst. Safety
,
96
(
11
), pp.
1527
1534
.10.1016/j.ress.2011.06.006
21.
Rocco
,
C. M.
, and
Moreno
,
J. A.
,
2002
, “
Fast Monte Carlo Reliability Evaluation Using Support Vector Machine
,”
Reliab. Eng. Syst. Safety
,
76
(
3
), pp.
237
243
.10.1016/S0951-8320(02)00015-7
22.
Zhao
,
H. B.
,
2008
, “
Slope Reliability Analysis Using a Support Vector Machine
,”
Comput. Geotech.
,
36
(
3
), pp.
459
467
.10.1016/j.compgeo.2007.08.002
23.
Richard
,
B.
,
Cremona
,
C.
, and
Adelaide
,
L.
,
2012
, “
A Response Surface Method Based on Support Vector Machines Trained With an Adaptive Experimental Design
,”
Struct. Safety
,
39
(
11
), pp.
14
21
.10.1016/j.strusafe.2012.05.001
24.
Basudhar
,
A.
, and
Missoum
,
S.
,
2008
, “
Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines
,”
Comput. Struct.
,
86
(
19–20
), pp.
1904
1917
.10.1016/j.compstruc.2008.02.008
25.
Zhang
,
C. Y.
, and
Bai
,
G. C.
,
2012
, “
Extremum Response Surface Method of Reliability Analysis on Two-Link Flexible Robot Manipulator
,”
Journal of Center South University
,
19
(
1
), pp.
101
107
.10.1007/s11771-012-0978-5
26.
Li
,
C.
, and
Han
,
X.
,
2011
, “
Analysis of Reliability Sensitivity for Gear Engagement Based on Response Surface Method
,”
J. Aerospace Power
,
26
(
3
), pp.
711
715
.
27.
Ma
,
M.
, and
Lu
,
Z. Z.
,
2007
, “
Structural System Reliability and Sensitivity Analysis Based on Support Vector Machine Regression
,”
Acta Mech. Solida Sin.
,
28
(
4
), pp.
415
419
. Available at http://en.cnki.com.cn/Article_en/CJFDTOTAL-GTLX200704015.htm
28.
Ersoy
,
H.
, and
Mugan
,
A.
,
2002
, “
Design Sensitivity Analysis of Structures Based Upon the Singular Value Decomposition
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
32
), pp.
3459
3476
.10.1016/S0045-7825(02)00259-1
29.
Bertina
,
H. M. Q.
, and
Dayawansa
,
W. P.
,
1998
, “
Non-Smooth Simultaneous Stabilization of Nonlinear Systems: An Interpolation Method
,”
Syst. Control Lett.
,
34
(
1–2
), pp.
43
53
.10.1016/S0167-6911(97)00129-1
You do not currently have access to this content.