In this paper, the existence and uniqueness of the square-mean almost periodic solutions to a class of the semilinear stochastic equations is studied. In particular, the condition of the uniform exponential stability of the linear operator is essentially removed, only using the exponential dichotomy of the linear operator. Some new criteria ensuring the existence and uniqueness of the square-mean almost periodic solution for the system are presented. Finally, an example of a kind of the stochastic cellular neural networks is given. These obtained results are important in signal processing and the in design of networks.

References

References
1.
Arnold
,
L.
, and
Tudor
,
C.
,
1998
, “
Stationary and Almost Periodic Solutions of Almost Periodic Affine Stochastic Differential Equations
,”
Stoch. Stoch. Rep.
,
64
, pp.
177
193
.10.1080/17442509808834163
2.
Bezandry
,
P. H.
,
2008
, “
Existence of Almost Periodic Solutions to Some Functional Integro-Differential Stochastic Evolution Equations
,”
Stat. Probab. Lett.
,
78
, pp.
2844
2849
.10.1016/j.spl.2008.04.008
3.
Slutsky
,
E.
,
1938
, “
Sur Les Fonctions AlÉAtoires Presque PÉRiodiques Et Sur La Decomposition Des Functions AlÉAtoires
,”
Actualités Sceintifiques et industrielles
,
Herman
,
Paris
, pp.
33
55
.
4.
Bezandry
,
P. H.
, and
Diagana
,
T.
,
2007
, “
Existence of Almost Periodic Solutions to Some Stochastic Differential Equations
,”
Appl. Anal.
,
86
, pp.
819
827
.10.1080/00036810701397788
5.
Swift
,
R. J.
,
1996
, “
Almost Periodic Harmonizable Processes
,”
Georgian Math. J.
,
3
, pp.
275
292
.10.1007/BF02280009
6.
Tudor
,
C.
,
1992
, “
Almost Periodic Solutions of Affine Stochastic Evolutions Equations
,”
Stoch. Stoch. Rep.
,
38
, pp.
251
266
.10.1080/17442509208833758
7.
Van Gaans
,
O.
,
Lunel
, and
Lunel
,
S. V.
,
2002
, “
Invariant Measures for Dichotomous Stochastic Differential Equations in Hilbert Spaces
,”
Acad. Sci., Paris, C. R., Ser. I
,
334
, pp.
1083
1088
.10.1016/S1631-073X(02)02410-X
8.
Luo
,
J.
,
2006
, “
Stochastically Bounded Solutions of Nonlinear Stochastic Differential Equations
,”
J. Comput. Appl. Math.
,
196
, pp.
87
93
.10.1016/j.cam.2005.08.023
9.
Bezandry
,
P. H.
, and
Diagana
,
T.
,
2007
, “
Existence of Almost Periodic Solutions to Some Stochastic Differential Equations
,”
Appl. Anal.
,
86
, pp.
819
827
.10.1080/00036810701397788
10.
Bezandry
,
P. H.
, and
Diagana
,
T.
,
2010
, “
Existence of Square-Mean Almost Periodic Mild Solutions to Some Nonautonomous Stochastic Second-Order Differential Equations
,”
Electron. J. Differ. Equations
,
2010
(
124
), pp.
1
25
. Available at: http://ejde.math.txstate.edu/Volumes/2010/124/bezandry.pdf
11.
Fu
,
M.
, and
Liu
,
Z.
,
2010
, “
Square-Mean Almost Automorphic Solutions for Some Stochastic Differential Equations
,”
Proc. Am. Math. Soc.
,
138
, pp.
3689
3701
.10.1090/S0002-9939-10-10377-3
12.
Huang
,
Z.
, and
Yang
,
Q.
,
2009
, “
Existence and Exponential Stability of Almost Periodic Solution for Stochastic Cellular Neural Networks With Delay
,”
Chaos, Solitons Fractals
,
42
, pp.
773
780
.10.1016/j.chaos.2009.02.008
13.
Huang
,
Z.
,
Yang
,
Q.
, and
Cao
,
J.
,
2011
, “
Stochastic Stability and Bifurcation Analysis on Hopfield Neural Networks With Noise
,”
Expert Sys. Applic.
,
38
, pp.
10437
10445
.10.1016/j.eswa.2011.02.111
14.
Chen
,
X.
, and
Lin
,
F.
,
2010
, “
Almost Periodic Solutions of Neutral Functional Differential Equations
,”
Nonlinear Anal.: Real World Appl.
,
11
, pp.
1182
1189
.10.1016/j.nonrwa.2009.02.010
15.
Chua
,
L. O.
, and
Yang
,
L.
,
1988
, “
Cellular Networks: Theory
,”
IEEE Trans. Circuits Syst.
,
35
, pp.
1257
1272
.10.1109/31.7600
16.
Cohen
,
M.
, and
Grossberg
,
S.
,
1983
, “
Absolute Stability and Global Pattern Formation and Parallel Memory Storage by Competitive Neural Networks
,”
IEEE Trans. Syst. Man Cybern.
,
13
, pp.
815
826
.10.1109/TSMC.1983.6313075
17.
Feng
,
C. H.
, and
Plamondon
,
R.
,
2001
, “
On the Stability Analysis of Delayed Neural Networks Systems
,”
Neural Networks
,
14
, pp.
1181
1188
.10.1016/S0893-6080(01)00088-0
18.
Feng
,
C. H.
, and
Plamondon
,
R.
,
2003
, “
Stability Analysis of Bidirectional Associative Memory Networks With Time Delays
,”
IEEE Trans. Neural Netw.
,
14
, pp.
1560
1565
.10.1109/TNN.2003.820829
19.
Hopfield
,
J.
,
1984
, “
Neurons With Graded Response Have Collective Computational Properties Like Those of Two-State Neurons
,”
Proc. Natl. Acad. Sci. U.S.A.
,
81
, pp.
3088
3092
.10.1073/pnas.81.10.3088
20.
He
,
H.
,
Daniel
,
W. C.
, and
Qu
,
Y.
,
2007
, “
Robust Stability of Stochastic Delayed Additive Neural Networks With Markovian Switching
,”
Neural Networks
,
20
, pp.
799
809
.10.1016/j.neunet.2007.07.003
21.
He
,
H.
,
Daniel
,
W. C.
, and
James
,
L.
,
2005
, “
Stochastic Stability Analysis of Fuzzy Hopfield Neural Networks With Time-Varying Delays
,”
IEEE Trans. Circuits Syst., II: Express Briefs
,
52
(
5
), pp.
251
265
.10.1109/TCSII.2005.846305
22.
Lu
,
J. X.
, and
Ma
,
Y.
,
2008
, “
Mean Square Exponential Stability and Periodic Solutions of Stochastic Delay Cellular Neural Networks
,”
Chaos, Solitons Fractals
,
38
, pp.
1323
1331
.10.1016/j.chaos.2007.08.053
23.
Wang
,
F.
, and
Wu
,
H.
,
2010
, “
Mean Square Exponential Stability and Periodic Solutions of Stochastic Interval Neural Networks With Mixed Time Delays
,”
Neurocomputing
,
73
(
16–18
), pp.
3256
3263
.10.1016/j.neucom.2010.04.020
24.
Cao
,
J.
,
Feng
,
G.
, and
Wang
,
Y.
,
2008
, “
Multistability and Multiperiodicity of Delayed Cohen-Grossberg Neural Networks With a General Class of Activation Functions
,”
Physica D
,
237
, pp.
1734
1749
.10.1016/j.physd.2008.01.012
25.
Li
,
X.
,
2010
, “
Existence and Global Exponential Stability of Periodic Solution for Delayed Neural Networks With Impulsive and Stochastic Effects
,”
Neurocomputing
,
73
, pp.
749
758
.10.1016/j.neucom.2009.10.016
26.
Xia
,
Y.
,
Cao
,
J.
, and
Huang
,
Z.
,
2007
, “
Existence and Exponential Stability of Almost Periodic Solution for Shunting Inhibitory Cellular Neural Networks With Impulses
,”
Chaos, Solitons Fractals
,
34
, pp.
1599
1607
.10.1016/j.chaos.2006.05.003
27.
Zhang
,
H.
, and
Xia
,
Y.
,
2008
, “
Existence and Exponential Stability of Almost Periodic Solution for Hopfield-Type Neural Networks With Impulse
,”
Chaos, Solitons Fractals
,
37
, pp.
1076
1082
.10.1016/j.chaos.2006.09.085
You do not currently have access to this content.