A basic assumption on the data used for nonlinear dynamic model identification is that the data points are continuously collected in chronological order. However, there are situations in practice where this assumption does not hold and we end up with an identification problem from multiple data sets. The problem is addressed in this paper and a new cross-validation-based orthogonal search algorithm for NARMAX model identification from multiple data sets is proposed. The algorithm aims at identifying a single model from multiple data sets so as to extend the applicability of the standard method in the cases, such as the data sets for identification are obtained from multiple tests or a series of experiments, or the data set is discontinuous because of missing data points. The proposed method can also be viewed as a way to improve the performance of the standard orthogonal search method for model identification by making full use of all the available data segments in hand. Simulated and real data are used in this paper to illustrate the operation and to demonstrate the effectiveness of the proposed method.

References

References
1.
Leontaritis
,
I. J.
, and
Billings
,
S. A.
,
1985
, “
Input-Output Parametric Models for Nonlinear Systems, Part I: Deterministic Nonlinear Systems; Part II: Stochastic Nonlinear Systems
,”
Int. J. Control
,
41
(
1
), pp.
303
344
.10.1080/0020718508961129
2.
Sjöberg
,
J.
,
Zhang
,
Q.
,
Ljung
,
L.
,
Benveniste
,
A.
,
Delyon
,
B.
,
Glorennec
,
P.
,
Hjalmarsson
,
H.
, and
Juditsky
,
A.
,
1995
, “
Nonlinear Black-Box Modeling in System Identification: A Unified Overview
,”
Automatica
,
31
(
12
), pp.
1691
1724
.10.1016/0005-1098(95)00120-8
3.
Billings
,
S. A.
, and
Chen
,
S.
,
1998
, “
The Determination of Multivariable Nonlinear Models for Dynamic Systems
,”
Control Dynamic Systems, Neural Network Systems Techniques and Applications
, Vol.
7
,
C. T.
Leondes
, ed.,
Academic
,
San Diego
, pp.
231
278
.
4.
Billings
,
S. A.
,
Korenberg
,
M. J.
, and
Chen
,
S.
,
1988
, “
Identification of Non-Linear Output Affine Systems Using an Orthogonal Least-Squares Algorithm
,”
Int. J. Syst. Sci.
,
19
, pp.
1559
1568
.10.1080/00207728808964057
5.
Billings
,
S. A.
,
Chen
,
S.
, and
Korenberg
,
M. J.
,
1989
, “
Identification of MIMO Non-Linear Systems Using a Forward Regression Orthogonal Estimator
,”
Int. J. Control
,
49
, pp.
2157
2189
.
6.
Chen
,
S.
,
Cowan
,
C. F. N.
, and
Grant
,
P. M.
,
1991
, “
Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
,”
IEEE Trans. Neural Netw.
,
2
(
2
), pp.
302
309
.10.1109/72.80341
7.
Billings
,
S. A.
, and
Wei
,
H. L.
,
2005
, “
A New Class of Wavelet Networks for Nonlinear System Identification
,”
IEEE Trans. Neural Netw.
,
16
(
4
), pp.
862
874
.10.1109/TNN.2005.849842
8.
Hong
,
X.
,
Chen
,
S.
, and
Harris
,
C. J.
,
2008
, “
A Fast Linear-in-the-Parameters Classifier Construction Algorithm Using Orthogonal Forward Selection to Minimize Leave-One-Out Misclassification Rate
,”
Int. J. Syst. Sci.
,
39
(
2
), pp.
119
125
.10.1080/00207720701727822
9.
Chen
,
S.
,
Hong
,
X.
,
Harris
,
C. J.
, and
Sharkey
,
P. M.
,
2004
, “
Sparse Kernel Density Construction Using Orthogonal Forward Regression With Leave-One-Out Test Score and Local Regularization
,”
IEEE Trans. Syst. Man Cyber. Part B
,
34
(
4
), pp.
1708
1717
.10.1109/TSMCB.2004.828199
10.
Chen
,
S.
,
Hong
,
X.
,
Luk
,
B. L.
, and
Harris
,
C. J.
,
2009
, “
Orthogonal-Least-Squares Regression: A Unified Approach for Data Modeling
,”
Neurocomputing
,
72
(
10–12
), pp.
2670
2681
.10.1016/j.neucom.2008.10.002
11.
Piroddi
,
L.
, and
Spinelli
,
W.
,
2003
, “
An Identification Algorithm for Polynomial NARX Models Based on Simulation Error Minimization
,”
Int. J. Control
,
76
(
17
), pp.
1767
1781
.10.1080/00207170310001635419
12.
Tibshirani
,
R. J.
,
1996
, “
Regression Shrinkage and Selection via the LASSO
,”
J. R. Stat. Soc. B
,
58
(
1
), pp.
267
288
.
13.
Kukreja
,
S. L.
,
2009
, “
Application of a Least Absolute Shrinkage and Selection Operator to Aeroelastic Flight Test Data
,”
Int. J. Control
,
82
(
12
), pp.
2284
2292
.10.1080/00207170903032847
14.
Kukreja
,
S. L.
,
Galiana
,
H. L.
, and
Kearney
,
R. E.
,
2004
, “
A Bootstrap Method For Structure Detection of NARMAX Models
,”
Int. J. Control
,
77
, pp.
132
143
.10.1080/00207170310001646264
15.
Lind
,
I.
, and
Ljung
,
L.
,
2005
, “
Regressor Selection With the Analysis of Variance Method
,”
Automatica
,
41
(
4
), pp.
693
700
.10.1016/j.automatica.2004.11.017
16.
Lind
,
I.
, and
Ljung
,
L.
,
2008
, “
Regressor and Structure Selection in NARX Models Using a Structured ANOVA Approach
,”
Automatica
,
44
(
2
), pp.
383
395
.10.1016/j.automatica.2007.06.010
17.
Chen
,
S.
,
Billings
,
S. A.
, and
Luo
,
W.
,
1989
, “
Orthogonal Least Squares Methods and Their Application to Non-Linear System Identification
,”
Int. J. Control
,
50
(
5
), pp.
1873
1896
.10.1080/00207178908953472
18.
Guo
,
L.
,
Billings
,
S. A.
, and
Zhu
,
D. Q.
,
2008
, “
An Extended Orthogonal Forward Regression Algorithm for System Identification Using Entropy
,”
Int. J. Control
,
81
(
4
), pp.
690
699
.10.1080/00207170701701031
19.
Billings
,
S. A.
, and
Wei
,
H. L.
,
2007
, “
Sparse Model Identification Using a Forward Orthogonal Regression Algorithm Aided by Mutual Information
,”
IEEE Trans. Neural Netw.
,
18
(
1
), pp.
306
310
.10.1109/TNN.2006.886356
20.
Zhu
,
Q. M.
, and
Billings
,
S. A.
,
1996
, “
Fast Orthogonal Identification of Nonlinear Stochastic Models and Radial Basis Function Neural Networks
,”
Int. J. Control
,
64
, pp.
871
886
.10.1080/00207179608921662
21.
Chen
,
S.
,
Chng
,
E. S.
, and
Alkadhimi
,
W.
,
1996
, “
Regularised Orthogonal Least Squares Algorithm for Constructing Radial Basis Function Networks
,”
Int. J. Control
,
64
(
5
), pp.
829
837
.10.1080/00207179608921659
22.
Hong
,
X.
, and
Harris
,
C. J.
,
2002
, “
Nonlinear Model Structure Design and Construction Using Orthogonal Least Squares and D-Optimality Design
,”
IEEE Trans. Neural Netw.
,
13
(
9
), pp.
1245
1250
.10.1109/TNN.2002.1031959
23.
Hong
,
X.
, and
Harris
,
C. J.
,
2003
, “
Experimental Design and Model Construction Algorithms for Radial Basis Function Networks
,”
Int. J. Syst. Sci.
,
34
(
14–15
), pp.
733
745
.10.1080/00207720310001640223
24.
Chen
,
S.
,
Hong
,
X.
, and
Harris
,
C. J.
,
2003
, “
Sparse Kernel Regression Modeling Using Combined Locally Regularized Orthogonal Least Squares and D-Optimality Experimental Design
,”
IEEE Trans. Auto. Control
,
48
(
6
), pp.
1029
1036
.10.1109/TAC.2003.812790
25.
Guo
,
L.
, and
Billings
,
S. A.
,
2007
, “
A Modified Orthogonal Forward Regression Least-Squares Algorithm for System Modelling From Noisy Regressors
,”
Int. J. Control
,
80
(
3
), pp.
340
348
.10.1080/00207170600891941
26.
Efron
,
B.
, and
Tibshirani
,
R. J.
,
1993
,
An Introduction to the Bootstrap
,
Chapman and Hall
,
London
.
27.
Myers
,
R. H.
,
1990
,
Classical and Modern Regression With Applications
,
2nd ed.
,
PWS-KENT
,
Boston
.
28.
Wang
,
L.
, and
Cluett
,
W. R.
,
1996
, “
Use of PRESS Residuals in Dynamic System Identification
,”
Automatica
,
32
(
5
), pp.
781
784
.10.1016/0005-1098(96)00003-9
29.
Hong
,
X.
,
Sharkey
,
P. M.
, and
Warwick
,
K.
,
2003
, “
Automatic Nonlinear Predictive Model-Construction Algorithm Using Forward Regression and the PRESS Statistic
,”
IEEE Proc. Control Theory Appl.
,
150
(
3
), pp.
245
254
.10.1049/ip-cta:20030311
30.
Chen
,
S.
,
Hong
,
X.
,
Harris
,
C. J.
, and
Sharkey
,
P. M.
,
2004
, “
Sparse Modeling Using Orthogonal Forward Regression With PRESS Statistic and Regularization
,”
IEEE Trans. Systems Man Cyber. Part B
,
34
(
2
), pp.
898
911
.10.1109/TSMCB.2003.817107
31.
Wei
,
H. L.
, and
Billings
,
S. A.
,
2009
, “
Improved Model Identification for Non-Linear System Using a Random Subsampling and Multifold Modelling (RSMM) Approach
,”
Int. J. Control
,
82
(
1
), pp.
27
42
.10.1080/00207170801955420
32.
Shao
,
J.
,
1993
, “
Linear Model Selection by Cross-Validation
,”
J. Am. Stat. Assoc.
,
88
(
422
), pp.
486
494
.10.1080/01621459.1993.10476299
33.
Klimas
,
A. J.
,
Vassiliadis
,
D.
,
Baker
,
D. N.
, and
Roberts
,
D. A.
,
1996
, “
The Organized Nonliear Dynamics of the Magnetosphere
,”
J. Geophys. Res.
,
101
(
A6
),
13089
13113
.10.1029/96JA00563
34.
Boaghe
,
O. M.
,
Balikhin
,
M. A.
,
Billings
,
S. A.
, and
Alleyne
,
H.
,
2001
, “
Identification of Nonlinear Processes in the Magnetospheric Dynamics and Forecasting of Dst Index
,”
J. Geophys. Res.
,
106
(
A12
),
30047
30066
, 10.1029/2000JA900162.10.1029/2000JA900162
You do not currently have access to this content.