Interconnected, self-excited oscillators are often found in nature and in engineered devices. In this work, a ring of van der Pol oscillators, each of which is connected to its immediate neighbors, is considered. The focus is on the emergent behavior of a large number of oscillators. Conditions are determined under which time-independent solutions are obtained, and the linear stability of these solutions is investigated. The effect of the singularity of the coupling matrix on the ring dynamics is explored. When this becomes singular, an infinite number of steady states is present, and the phenomenon of oscillation death arises. It is also possible to have, depending on initial conditions, all oscillators with in-phase synchrony, metachronal traveling waves with different wavelengths going around the ring, or standing waves. Interconnected oscillators can propagate information at a group velocity, and the information signal is present as an amplitude modulation.

References

References
1.
Lubkin
,
S.
, and
Rand
,
R.
,
1994
, “
Oscillatory Reaction-Diffusion Equations on Rings
,”
J. Math. Biol.
,
32
(
6
), pp.
617
632
.10.1007/BF00573464
2.
Tenreiro
,
C.
, and
Elgueta
,
R.
,
2010
, “
Modeling the Sleep-Wake Cycle Using Coupled Van der Pol Oscillators
,”
Biol. Rhythm Res.
,
41
(
2
), pp.
149
157
.10.1080/09291010903299095
3.
Tsumoto
,
K.
,
Yoshinaga
,
T.
, and
Kawakami
,
H.
,
2002
, “
Bifurcations of Synchronized Responses in Synaptically Coupled Bonhoffer–van der Pol Neurons
,”
Phys. Rev. E
,
65
(
3
), p.
036230
.10.1103/PhysRevE.65.036230
4.
Blazek
,
V.
,
1968
, “
A Semiconductor Laser as a Classical Van der Pol Oscillator Controlled by an External Signal
,”
Czech. J. Phys.
,
18
(
5
), pp.
644
646
.10.1007/BF01691017
5.
Algaba
,
A.
,
Fernandez-Sanchez
,
F.
,
Freire
,
E.
,
Gamero
,
E.
, and
Rodriguez-Luis
,
A.
,
2002
, “
Oscillation-Sliding in a Modified van der Pol-Duffing Electronic Oscillator
,”
J. Sound Vib.
,
249
(
5
), pp.
899
907
.10.1006/jsvi.2001.3931
6.
Pantaleone
,
J.
,
2002
, “
Synchronization of Metronomes
,”
Am. J. Phys.
,
70
(
10
), pp.
992
1000
.10.1119/1.1501118
7.
McMillan
,
A.
,
1997
, “
A Non-Linear Friction Model for Self-Excited Vibrations
,”
J. Sound Vib.
,
205
(
3
), pp.
323
335
.10.1006/jsvi.1997.1053
8.
Monkewitz
,
P.
,
1996
, “
Modeling of Self-Excited Wake Oscillations by Amplitude Equations
,”
Exp. Therm. Fluid Sci.
,
12
(
2
), pp.
175
183
.10.1016/0894-1777(95)00092-5
9.
Dowell
,
E.
, and
Hall
,
K.
,
2001
, “
Modeling of Fluid-Structure Interaction
,”
Annu. Rev. Fluid Mech.
,
33
, pp.
445
490
.10.1146/annurev.fluid.33.1.445
10.
Duffin
,
R.
, and
Knowles
,
G.
,
1984
, “
A Passive Wall Design to Minimize Temperature Swings
,”
Sol. Energy
,
33
(
3–4
), pp.
337
342
.10.1016/0038-092X(84)90163-4
11.
Goel
,
P.
, and
Ermentrout
,
B.
,
2002
, “
Synchrony, Stability, and Ring Patterns in Pulse-Coupled Oscillators
,”
Physica D
,
163
, pp.
191
216
.10.1016/S0167-2789(01)00374-8
12.
Cai
,
W.
,
Sen
,
M.
,
Yang
,
K.
, and
McClain
,
R.
,
2006
, “
Synchronization of Self-Sustained Thermostatic Oscillations in a Thermal-Hydraulic Network
,”
Int. J. Heat Mass Transfer
,
49
, pp.
4444
4453
.10.1016/j.ijheatmasstransfer.2006.04.027
13.
Cai
,
W.
, and
Sen
,
M.
,
2008
, “
Synchronization of Thermostatically Controlled First-Order Systems
,”
Int. J. Heat Mass Transfer
,
51
(
11–12
), pp.
3032
3043
.10.1016/j.ijheatmasstransfer.2007.09.010
14.
Barron
,
M.
, and
Sen
,
M.
,
2009
, “
Synchronization of Four Coupled van der Pol Oscillators
,”
Nonlinear Dyn.
,
56
(
4
), pp.
357
367
.10.1007/s11071-008-9402-y
15.
Linkens
,
D. A.
,
1974
, “
Analytical Solution of Large Numbers of Mutually Coupled Nearly Sinusoidal Oscillators
,”
IEEE Trans. Circuits Syst.
,
21
(
2
), pp.
294
300
.10.1109/TCS.1974.1083848
16.
Endo
,
T.
, and
Mori
,
S.
,
1978
, “
Mode Analysis of a Ring of a Large Number of Mutually Coupled Vanderpol Oscillators
,”
IEEE Trans. Circuits Syst.
,
25
(
1
), pp.
7
18
.10.1109/TCS.1978.1084380
17.
Bridge
,
J.
,
Mendelowitz
,
L.
,
Rand
,
R.
,
Sah
,
S.
, and
Verdugo
,
A.
,
2009
, “
Dynamics of a Ring of Three Coupled Relaxation Oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
4
), pp.
1598
1608
.10.1016/j.cnsns.2008.05.012
18.
Yamapi
,
R.
,
Kadji
,
H.
, and
Filatrella
,
G.
,
2010
, “
Stability of the Synchronization Manifold in Nearest Neighbor Nonidentical van der Pol-Like Oscillators
,”
Nonlinear Dyn.
,
61
, pp.
275
294
.10.1007/s11071-009-9648-z
19.
Pogromsky
,
A.
, and
Nijmeijer
,
H.
,
2001
, “
Cooperative Oscillatory Behavior of Mutually Coupled Dynamical Systems
,”
IEEE Trans. Circuit Syst., I: Fundam. Theory Appl.
,
48
(
2
), pp.
152
162
.10.1109/81.904879
20.
Senthilkumar
,
D.
,
Muruganandam
,
P.
,
Lakshmanan
,
M.
, and
Kurths
,
J.
,
2010
, “
Scaling and Synchronization in a Ring of Diffusively Coupled Nonlinear Oscillators
,”
Phys. Rev. E
,
81
, p.
066219
.10.1103/PhysRevE.81.066219
21.
Barron
,
M.
,
Sen
,
M.
, and
Corona
,
E.
,
2008
, “
Dynamics of Large Rings of Coupled Van der Pol Oscillators
,”
Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering
,
K.
Elleithy
, ed.,
Springer
,
New York
, pp.
346
349
.
22.
Ookawara
,
T.
, and
Endo
,
T.
,
1999
, “
Effects of the Deviation of Element Values in a Ring of Three and Four Coupled van der Pol Oscillators
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
46
, pp.
827
840
.10.1109/81.774228
23.
Nana
,
B.
, and
Woafo
,
P.
,
2006
, “
Synchronization in a Ring of Four Mutually Coupled van der Pol Oscillators: Theory and Experiment
,”
Phys. Rev. E
,
74
(
4
), p.
046213
.10.1103/PhysRevE.74.046213
24.
Kruglov
,
V.
, and
Kuznetsov
,
S.
,
2011
, “
An Autonomous System With Attractor of Smale-Williams Type With Resonance Transfer of Excitation in a Ring Array of van der Pol Oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
8
), pp.
3219
3223
.10.1016/j.cnsns.2010.11.027
25.
Suarez-Vargas
,
J.
,
Gonzalez
,
J.
,
Stefanovska
,
A.
, and
McClintock
,
P.
,
2009
, “
Diverse Routes to Oscillation Death in a Coupled-Oscillator System
,”
EPL
,
85
, p.
38008
.10.1209/0295-5075/85/38008
26.
Zou
,
W.
,
Wang
,
X.
,
Zhao
,
Q.
, and
Zhan
,
M.
,
2009
, “
Oscillation Death in Coupled Oscillators
,”
Fron. Phys. China
,
374
, pp.
178
185
.10.1007/s11461-009-0022-6
27.
Mitran
,
S.
,
2007
, “
Metachronal Wave Formation in a Model of Pulmonary Cilia
,”
Comput. Struct.
,
85
, pp.
763
774
.10.1016/j.compstruc.2007.01.015
28.
Niedermayer
,
T.
,
Eckhardt
,
B.
, and
Lenz
,
P.
,
2008
, “
Synchronization, Phase Locking, and Metachronal Wave Formation in Ciliary Chains
,”
Chaos
,
18
, p.
037128
.10.1063/1.2956984
29.
Tadokoro
,
S.
,
Yamaguti
,
Y.
,
Fujii
,
H.
, and
Tsuda
,
I.
,
2011
, “
Transitory Behaviors in Diffusively Coupled Nonlinear Oscillators
,”
Cognit. Neurodynamics
,
5
(
1
), pp.
1
12
.10.1007/s11571-010-9130-0
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.