The aim of this study is to provide a comprehensive review of the finite element absolute nodal coordinate formulation, which can be used to obtain efficient solutions to large deformation problems of constrained multibody systems. In particular, important features of different types of beam and plate elements that have been proposed since 1996 are reviewed. These elements are categorized by parameterization of the elements (i.e., fully parameterized and gradient deficient elements), strain measures used, and remedies for locking effects. Material nonlinearities and the integration of the absolute nodal coordinate formulation to general multibody dynamics computer algorithms are addressed with particular emphasis on visco-elasticity, elasto-plasticity, and joint constraint formulations. Furthermore, it is shown that the absolute nodal coordinate formulation has been applied to a wide variety of challenging nonlinear dynamics problems that include belt drives, rotor blades, elastic cables, leaf springs, and tires. Unresolved issues and future perspectives of the study of the absolute nodal coordinate formulation are also addressed in this investigation.

References

1.
Shabana
,
A. A.
,
2005
, Dynamics of Multibody Systems, 3rd ed.,
Cambridge University Press
,
Cambridge
.
2.
Shabana
,
A. A.
, and
Wehage
,
R. A.
,
1983
, “
Coordinate Reduction Technique for Transient Analysis of Spatial Substructures With Large Angular Rotations
,”
J. Struct. Mech.
,
11
(
3
), pp.
401
431
.10.1080/03601218308907450
3.
Yoo
,
W. S.
, and
Haug
,
E. J.
,
1986
, “
Dynamics of Articulated Structures Part I. Theory
,”
J. Struct. Mech.
,
14
(
1
), pp.
105
126
.10.1080/03601218608907512
4.
Wallrapp
,
O.
, and
Wiedemann
,
S.
,
2003
, “
Comparison of Results in Flexible Multibody Dynamics Using Various Approaches
,”
Nonlinear Dyn.
,
34
(
1–2
), pp.
189
206
.10.1023/B:NODY.0000014559.74006.fb
5.
Shabana
A. A.
, and
Schwertassek
,
R.
,
1997
, “
Equivalance of the Floating Frame of Reference Approach and Finite Element Formulations
,”
Int. J. Non-Linear Mech.
,
33
(
3
), pp.
417
432
.10.1016/S0020-7462(97)00024-3
6.
Shabana
,
A. A.
,
1996
, “
An Absolute Nodal Coordinate Formulation for the Large Rotation and Large Deformation Analysis of Flexible Bodies
,” Technical Report No. MBS96-1-UIC.
7.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
, pp.
339
348
.10.1023/A:1009740800463
8.
Dombrowski
,
S. V.
,
1997
, “
Modellierung von Balken bei grossen Verformungen fuer ein kraftreflektierendes Eingabegeraet
,” Diploma thesis,
University Stuttgart and DLR
,
Stuttgart
.
9.
Shabana
,
A. A.
,
2010
, “
Uniqueness of the Geometric Representation in Large Rotation Finite Element Formulations
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
044501
.10.1115/1.4001909
10.
Omar
,
M. A.
, and
Shabana
,
A. A.
,
2001
, “
A Two-Dimensional Shear Deformable Beam for Large Rotations and Deformation Problems
,”
J. Sound Vib.
,
243
, pp.
565
576
.10.1006/jsvi.2000.3416
11.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
, pp.
606
613
.10.1115/1.1410100
12.
Shabana
,
A. A.
,
Hussein
,
H. A.
, and
Escalona
,
J. L.
,
1998
, “
Application of the Absolute Nodal Coordinate Formulation to Large Rotation and Large Deformation Problems
,”
ASME J. Mech. Des.
,
120
(
2
), pp.
188
195
.10.1115/1.2826958
13.
Dmitrochenko
,
O.
, and
Mikkola
,
A. M.
,
2008
, “
Two Simple Triangular Plate Elements Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
4
), p.
041012
.10.1115/1.2960479
14.
Dmitrochenko
,
O.
, and
Mikkola
,
A. M.
,
2011
, “
Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Co-Ordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
225
(
K1
), pp.
34
51
.10.1177/2041306810392115
15.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2003
, “
Computational Strategies for Flexible Multibody Systems
,”
Appl. Mech.Rev.
,
56
(
6
), pp.
553
613
.10.1115/1.1590354
16.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A. M.
,
2012
, “
An Overview on the Developments of the Absolute Nodal Coordinate Formulation
,”
Proceedings of the 2nd Joint International Conference on Multibody System Dynamics
,
Stuttgart, Germany
.
17.
Berzeri
,
M.
, and
Shabana
,
A. A.
,
2000
, “
Development of Simple Models for the Elastic Forces in the Absolute Nodal Co-Ordinate Formulation
,”
J. Sound Vib.
,
235
(
4
), pp.
539
565
.10.1006/jsvi.1999.2935
18.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation
,”
Nonlinear Dyn.
,
45
, pp.
109
130
.10.1007/s11071-006-1856-1
19.
Escalona
,
J. L.
,
Hussien
,
H. A.
, and
Shabana
,
A. A.
,
1998
, “
Application of the Absolute Nodal Co-Ordinate Formulation to Multibody System Dynamics
,”
J. Sound Vib.
,
214
(
5
), pp.
833
851
.10.1006/jsvi.1998.1563
20.
Campanelli
,
M.
,
Berzeri
,
M.
, and
Shabana
,
A. A.
,
2000
, “
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems
,”
ASME J. Mech. Des.
,
122
, pp.
498
507
.10.1115/1.1289636
21.
Dufva
,
K.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2005
, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
280
, pp.
719
738
.10.1016/j.jsv.2003.12.044
22.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics: Review of Past and Recent Developments
,”
Multibody Syst. Dyn.
,
1
(
2
), pp. 189–222.
23.
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2008
, “
On the Correct Representation of Bending and Axial Deformation in the Absolute Nodal Coordinate Formulation With an Elastic Line Approach
,”
J. Sound Vib.
,
318
, pp.
461
487
.10.1016/j.jsv.2008.04.019
24.
Christensen
,
A. P.
, and
Shabana
,
A. A.
,
1998
, “
Exact Modeling of the Spatial Rigid Body Inertia Using the Finite Element Method
,”
ASME J. Vibr. Acoust.
,
120
, pp.
650
657
.10.1115/1.2893879
25.
Berzeri
,
M.
, and
Shabana
,
A. A.
,
2002
, “
Study of the Centrifugal Stiffening Effect Using the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
7
, pp.
357
387
.10.1023/A:1015567829908
26.
Dombrowski
,
S. V.
,
2002
, “
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
,”
Multibody Syst. Dyn.
,
8
, pp.
409
432
.10.1023/A:1021158911536
27.
Reissner
,
E.
,
1972
, “
On One-Dimensional Finite Strain Beam Theory: The Plane Problem
,”
J. Appl. Math. Phys.
,
23
, pp.
794
804
.
28.
Sugiyama
,
H.
,
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Deformation Modes in the Finite Element Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
298
, pp.
1129
1149
.10.1016/j.jsv.2006.06.037
29.
Gerstmayr
,
J.
,
Matikainen
,
M. K.
, and
Mikkola
,
A. M.
,
2008
, “
A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
20
(
4
), pp.
359
384
.10.1007/s11044-008-9125-3
30.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
,
2010
, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
1
), pp.
1
10
.10.1115/1.4000320
31.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
1999
, “
Use of Cholesky Coordinates and the Absolute Nodal Coordinate Formulation in the Computer Simulation of Flexible Multibody Systems
,”
Nonlinear Dyn.
,
20
, pp.
267
282
.10.1023/A:1008323106689
32.
Sugiyama
,
H.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
,
2003
, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
31
, pp.
167
195
.10.1023/A:1022082826627
33.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem. Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.10.1016/0045-7825(85)90050-7
34.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
, pp.
614
621
.10.1115/1.1410099
35.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
, pp.
53
74
.10.1023/B:NODY.0000014552.68786.bc
36.
García-Vallejo
,
D.
,
Mikkola
,
A. M.
, and
Escalona
,
J. L.
,
2007
, “
A New Locking-Free Shear Deformable Finite Element Based on Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
50
, pp.
249
264
.10.1007/s11071-006-9155-4
37.
Kerkkänen
,
K. S.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2005
, “
A Linear Beam Finite Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Mech.Des.
,
127
, pp.
621
630
.10.1115/1.1897406
38.
Gerstmayr
,
J.
, and
Matikainen
,
M. K.
,
2006
, “
Analysis of Stress and Strain in the Absolute Nodal Coordinate Formulation
,”
Mech. Based Des. Struct. Mach.
,
34
(
4
), pp.
409
430
.10.1080/15397730601044895
39.
Nachbagauer
,
K.
,
Gruber
,
P.
, and
Gerstmayr
,
J.
,
2013
, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p. 021004.10.1115/1.4006787
40.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method, Volume 2: Solid Mechanics
,
Butterworth & Heinemann
,
London
.
41.
Hussein
,
B. A.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2007
, “
Coupled Deformation Modes in the Large Deformation Finite-Element Analysis: Problem Definition
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
2
), pp.
146
154
.10.1115/1.2447353
42.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2007
, “
A Curved Beam Element in the Analysis of Flexible Multi-Body Systems Using the Absolute Nodal Coordinates
,”
Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
221
, pp.
219
231
.10.1243/1464419JMBD86
43.
Romero
,
I.
,
2008
, “
A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations
,”
Multibody Syst. Dyn.
,
20
, pp.
51
68
.10.1007/s11044-008-9105-7
44.
Nachbagauer
,
K.
,
Pechstein
,
A. S.
,
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2011
, “
A New Locking-Free Formulation for Planar, Shear Deformable, Linear and Quadratic Beam Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
J. Multibody Syst. Dyn.
,
26
, pp.
245
263
.10.1007/s11044-011-9249-8
45.
Dmitrochenko
,
O.
, and
Mikkola
,
A. M.
,
2009
, “
A Formal Procedure and Invariants of a Transition From Conventional Finite Elements to the Absolute Nodal Coordinate Formulation
,”
Multibody Sys. Dyn.
,
22
(
4
), pp.
323
339
.10.1007/s11044-009-9162-6
46.
Matikainen
,
M. K.
,
Dmitrochenko
,
O.
, and
Mikkola
,
A. M.
,
2010
, “
Beam Elements With Trapezoidal Cross Section Deformation Modes Based on the Absolute Nodal Coordinate Formulation
,”
International Conference of Numerical Analysis and Applied Mathematics
, pp.
19
25
.
47.
Dmitrochenko
,
O.
, and
Pogorelov
,
D. Y.
,
2003
, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
10
(
1
), pp.
17
43
.10.1023/A:1024553708730
48.
Dmitrochenko
,
O.
,
Yoo
,
W. S.
, and
Pogorelov
,
D.
,
2006
, “
Helicoseir as Shape of a Rotating String (II): 3D Theory and Simulation Using ANCF
,”
Multibody Syst. Dyn.
,
15
, pp.
181
200
.10.1007/s11044-005-9004-0
49.
Yoo
,
W. S.
,
Dmitrochenko
,
O.
,
Park
,
S. J.
, and
Lim
,
O. K.
,
2005
, “
A New Thin Spatial Beam Element Using the Absolute Nodal Coordinates: Application to a Rotating Strip
,”
Mech. Based Des. Struct. Mach.
,
33
, pp.
399
422
.10.1080/15367730500458267
50.
Nachbagauer
,
K.
,
Gruber
,
P.
,
Vetyukov
,
Y.
, and
Gerstmayr
,
J.
,
2011
, “
A Spatial Thin Beam Element Based on the Absolute Nodal Coordinate Formulation Without Singularities
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, pp.
1
9
.
51.
Iwai
,
R.
, and
Kobayashi
,
N.
,
2003
, “
A New Flexible Multibody Beam Element Based on the Absolute Nodal Coordinate Formulation Using the Global Shape Function and the Analytical Mode Shape Function
,”
Nonlinear Dyn.
,
34
, pp.
207
232
.10.1023/B:NODY.0000014560.78333.76
52.
Mikkola
,
A. M.
,
Dmitrochenko
,
O.
, and
Matikainen
,
M. K.
,
2007
, “
A Procedure for the Inclusion of Transverse Shear Deformation in a Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
Proceedings of the 6th International Conference on Multibody Systems, Nonlinear Dynamics and Control
.
53.
Dibold
,
M.
,
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2009
, “
A Detailed Comparison of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
10
.10.1115/1.3079825
54.
Sugiyama
,
H.
,
Koyama
,
H.
, and
Yamashita
,
H.
,
2010
, “
Gradient Deficient Curved Beam Element Using the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
5
, p.
021001
.10.1115/1.4000793
55.
Sanborn
,
G. G.
,
Choi
,
J.
, and
Choi
,
J. H.
,
2011
, “
Curved-Induced Distortion of Polynomial Space Curves, Flat-Mapped Extension Modeling, and Their Impact on ANCF Thin-Plate Finite Elements
,”
Multibody Syst. Dyn.
,
36
(
2
), pp.
191
211
.10.1007/s11044-011-9248-9
56.
Dufva
,
K. E.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2006
, “
Three-Dimensional Beam Element Based on a Cross-Sectional Coordinate System Approach
,”
Nonlinear Dyn.
,
43
, pp.
311
327
.10.1007/s11071-006-8326-7
57.
Matikainen
,
M. K.
,
von Hertzen
,
R.
,
Mikkola
,
A. M.
, and
Gerstmayr
,
J.
,
2010
, “
Elimination of High Frequencies in Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
224
, pp.
103
116
.10.1243/14644193JMBD186
58.
Orzechowski
,
G.
, and
Fraczek
,
J.
,
2011
, “
Beam Element of Circular Cross Section Based on the ANCF Continuum Mechanics Approach
,”
Multibody Dynamics 2011, ECCOMAS Thematic Conference on Multibody Dynamics, Brussels
.
59.
Dufva
,
K.
, and
Shabana
,
A. A.
,
2005
, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
219
(
4
), pp.
345
355
.10.1243/146441905X50678
60.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2003
, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformations of Plates and Shells in Mechanical System Applications
,”
Multibody Syst. Dyn.
,
9
, pp.
283
309
.10.1023/A:1022950912782
61.
Mikkola
,
A. M.
, and
Matikainen
,
M. K.
,
2006
, “
Development of Elastic Forces for a Large Deformation Plate Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
2
), pp.
103
108
.10.1115/1.1961870
62.
Abbas
,
L.K.
,
Rui
,
X.
, and
Hammoudi
,
Z. S.
,
2010
, “
Plate/Shell Element of Variable Thickness Based on the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
224
(
K2
), pp.
127
141
.10.1243/14644193JMBD244
63.
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H.
,
2011
, “
Dynamics of a Large Scale Rigid-Flexible Multibody System Composed of Composite Laminated Plates
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
283
305
.10.1007/s11044-011-9256-9
64.
Shabana
,
A. A.
, and
Mikkola
,
A. M.
,
2003
, “
On the Use of the Degenerated Plate and the Absolute Nodal Coordinate Formulations in Multibody System Applications
,”
J. Sound Vib.
,
259
(
2
), pp.
481
489
.10.1006/jsvi.2002.5156
65.
Yoo
,
W. S.
,
Lee
,
J. H.
,
Park
,
S. J.
,
Sohn
,
J. H.
,
Pogorelov
,
D.
, and
Dmitrochenko
,
O.
,
2004
, “
Large Deflection Analysis of a Thin Plate: Computer Simulations and Experiments
,”
Multibody Syst. Dyn.
,
11
(
2
), pp.
185
208
.10.1023/B:MUBO.0000025415.73019.bb
66.
Sereshk
,
M. V.
, and
Salimi
,
M.
,
2011
, “
Comparison of Finite Element Method Based on Nodal Displacement and Absolute Nodal Coordinate Formulation (ANCF) in Thin Shell Analysis
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
8
), pp.
1185
1198
.10.1002/cnm.1348
67.
Schwab
,
A. L.
,
Gerstmayr
,
J.
, and
Meijaard
,
J. P.
,
2007
, “
Comparison of Three-Dimensional Flexible Thin Plate Elements for Multibody Dynamic Analysis: Finite Element Formulation and Absolute Nodal Coordinate Formulation
,”
Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, Nevada
, Paper No. DETC2007-34754.
68.
Takahashi
,
Y.
,
Shimizu
,
N.
, and
Suzuki
,
K.
,
2002
, “
Introduction of Damping Matrix Into Absolute Nodal Coordinate Formulation
,”
Proceedings of the Asian Conference on Multibody Dynamics
, pp.
33
40
.
69.
Yoo
,
W. S.
,
Kim
,
M. S.
,
Mun
,
S. H.
, and
Sohn
,
J. H.
,
2006
, “
Large Displacement of Beam With Base Motion: Flexible Multibody Simulations and Experiments
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
7036
7051
.10.1016/j.cma.2005.02.035
70.
Yoo
,
W. S.
,
Lee
,
J. H.
,
Park
,
S. J.
,
Sohn
,
J. H.
,
Dmitrochenko
,
O.
, and
Pogorelov
,
D.
,
2003
, “
Large Oscillations of a Thin Cantilever Beam: Physical Experiments and Simulation Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
. pp.
3
29
.10.1023/B:NODY.0000014550.30874.cc
71.
Lee
,
J. W.
,
Kim
,
H. W.
,
Ku
,
H. C.
, and
Yoo
,
W. S.
,
2009
, “
Comparison of External Damping Models in a Large Deformation Problem
,”
J. Sound Vib.
,
325
, pp.
722
741
.10.1016/j.jsv.2009.04.018
72.
García-Vallejo
,
D.
,
Valverde
,
J.
, and
Dominguez
,
J.
,
2005
, “
An Internal Damping Model for the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
42
, pp.
347
369
.10.1007/s11071-005-6445-1
73.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformation
,
Dover
,
New York
.
74.
Maqueda
,
L. G.
, and
Shabana
,
A. A.
,
2007
, “
Poisson Modes and General Nonlinear Constitutive Models in the Large Displacement Analysis of Beams
,”
Multibody Syst. Dyn.
,
18
, pp.
375
396
.10.1007/s11044-007-9077-z
75.
Jung
,
S. P.
,
Park
,
T. W.
, and
Chung
,
W. S.
,
2011
, “
Dynamic Analysis of Rubber-Like Material Using Absolute Nodal Coordinate Formulation Based on the Non-Linear Constitutive Law
,”
Nonlinear Dyn.
,
63
, pp.
149
157
.10.1007/s11071-010-9792-5
76.
Mohamed
,
A.-N. A.
, and
Shabana
,
A. A.
,
2011
, “
A Nonlinear Visco-Elastic Constitutive Model for Large Rotation Finite Element Formulations
,”
Multibody Syst. Dyn.
,
26
, pp.
57
79
.10.1007/s11044-011-9244-0
77.
Zhang
,
Y.
,
Tian
,
Q.
,
Chen
,
L.
, and
Yang
,
J.
,
2009
, “
Simulation of a Viscoelastic Flexible Multibody System Using Absolute Nodal Coordinate and Fractional Derivative Methods
,”
Multibody Syst. Dyn.
,
21
, pp.
281
303
.10.1007/s11044-008-9139-x
78.
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2004
, “
Application of Plasticity Theory and Absolute Nodal Coordinate Formulation to Flexible Multibody System Dynamics
,”
ASME J. Mech. Des.
,
126
, pp.
478
487
.10.1115/1.1737491
79.
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2004
, “
On the Use of Implicit Integration Methods and the Absolute Nodal Coordinate Formulation in the Analysis of Elasto-Plastic Deformation Problems
,”
Nonlinear Dyn.
,
37
, pp.
245
270
.10.1023/B:NODY.0000044644.53684.5b
80.
Simo
,
J. C.
, and
Hughes
,
T. J.
,
1998
,
Computational Inelasticity
,
Springer
,
New York
.
81.
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2011
, “
A Continuum-Mechanics Interpretation of Reissner's Non-Linear Shear-Deformable Beam Theory
,”
Math. Comput. Model. Dyn. Syst.
,
17
(
1
), pp.
19
29
.10.1080/13873954.2010.537512
82.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
, “
Beam Benchmark Problems for Validation of Flexible Multibody Dynamics Codes
,”
Proceedings of the Multibody Dynamics 2009 Eccomas Thematic Conference
,
K.
Arczewski
,
J.
Fraczek
, and
M.
Wojtyra
, eds., pp.
1
13
.
83.
Liu
,
J.
, and
Hong
,
J.
,
2007
, “
Nonlinear Formulation for Flexible Multibody System With Large Deformation
,”
Acta Mech. Sin.
,
23
, pp.
111
119
.10.1007/s10409-006-0046-1
84.
Romero
,
I.
, and
Arribas
,
J. J.
,
2009
, “
A Simple Method to Impose Rotations and Concentrated Moments on ANC Beams
,”
Multibody Syst. Dyn.
,
21
, pp.
307
323
.10.1007/s11044-008-9140-4
85.
García-Vallejo
,
D.
,
Escalona
,
J. L.
,
Mayo
,
J.
, and
Dominguez
,
J.
,
2003
, “
Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates
,”
Nonlinear Dyn.
,
34
, pp.
75
94
.10.1023/B:NODY.0000014553.98731.8d
86.
García-Vallejo
,
D.
,
Mayo
,
J.
,
Escalona
,
J. L.
, and
Dominguez
,
J.
,
2008
, “
Three-Dimensional Formulation of Rigid-Flexible Multibody Systems With Flexible Beam Elements
,”
Multibody Syst. Dyn.
,
20
, pp.
1
28
.10.1007/s11044-008-9103-9
87.
Hussein
,
B. A.
,
Weed
,
D.
, and
Shabana
,
A. A.
,
2009
, “
Clamped End Conditions and Cross Section Deformation in the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
21
, pp.
375
393
.10.1007/s11044-009-9146-6
88.
Sugiyama
,
H.
, and
Yamashita
,
H.
,
2011
, “
Spatial Joint Constraints for the Absolute Nodal Coordinate Formulation Using the Non-Generalized Intermediate Coordinates
,”
Multibody Syst. Dyn.
,
26
, pp.
15
36
.10.1007/s11044-010-9236-5
89.
Yu
,
L.
,
Zhao
,
Z.
,
Tang
,
J.
, and
Ren
,
G.
,
2010
, “
Integration of Absolute Nodal Elements Into Multibody System
,”
Nonlinear Dyn.
,
62
, pp.
931
943
.10.1007/s11071-010-9775-6
90.
Tian
,
Q.
,
Liu
,
C.
,
Machado
,
M.
, and
Flores
,
P.
,
2011
, “
A New Model for Dry and Lubricated Cylindrical Joints With Clearance in Spatial Flexible Multibody Systems
,”
Nonlinear Dyn.
,
64
, pp.
25
47
.10.1007/s11071-010-9843-y
91.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
, pp.
913
929
.10.1016/j.compstruc.2009.03.006
92.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Yang
,
J.
,
2010
, “
Simulation of Planar Flexible Multibody Systems With Clearance and Lubricated Revolute Joints
,”
Nonlinear Dyn.
,
60
, pp.
489
511
.10.1007/s11071-009-9610-0
93.
Hussein
,
B. A.
,
Negrut
,
D.
, and
Shabana
,
A. A.
,
2008
, “
Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations
,”
Nonlinear Dyn.
,
54
, pp.
283
296
.10.1007/s11071-007-9328-9
94.
Gerstmayr
,
J.
,
2009
, “
HOTINT—A C++ Environment for the Simulation of Multibody Dynamics Systems and Finite Elements
,”
Multibody Dynamics 2009, ECCOMAS Thematic Conference on Multibody Dynamics
,
Warsaw
.
95.
Shabana
,
A. A.
, and
Mikkola
,
A. M.
,
2003
, “
Use of the Finite Element Absolute Nodal Coordinate Formulation in Modeling Slope Discontinuity
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
342
350
.10.1115/1.1564569
96.
Shabana
,
A. A.
, and
Maqueda
,
L. G.
,
2008
, “
Slope Discontinuities in the Finite Element Absolute Nodal Coordinate Formulation: Gradient Deficient Elements
,”
Multibody Syst. Dyn.
,
20
, pp.
239
249
.10.1007/s11044-008-9111-9
97.
Maqueda
,
L. G.
, and
Shabana
,
A. A.
,
2009
, “
Numerical Investigation of the Slope Discontinuites in Large Deformation Finite Element Formulations
,”
Nonlinear Dyn.
,
58
, pp.
23
37
.10.1007/s11071-008-9458-8
98.
Bauchau
,
O. A.
, and
Bottasso
,
C. L.
,
2001
, “
Contact Conditions for Cylindrical, Prismatic, and Screw Joints in Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
5
, pp.
251
278
.10.1023/A:1011461223706
99.
Lee
,
S. H.
,
Park
,
T. W.
,
Seo
,
J. H.
,
Yoon
,
J. W.
, and
Jun
,
K. J.
,
2008
, “
The Development of a Sliding Joint for Very Flexible Multibody Dynamics Using Absolute Coordinate Formulation
,”
Multibody Syst. Dyn.
,
20
, pp.
223
237
.10.1007/s11044-008-9109-3
100.
Hong
,
D.
, and
Ren
,
G.
,
2011
, “
A Modeling of Sliding Joint on One-Dimensional Flexible Medium
,”
Multibody Syst. Dyn.
,
26
, pp.
91
106
.10.1007/s11044-010-9242-7
101.
Kawaguti
,
K.
,
Terumichi
,
Y.
,
Takehara
,
S.
,
Kaczmarczyk
,
S.
, and
Sogabe
,
K.
,
2007
, “
The Study of the Tether Motion With Time-Varying Length Using the Absolute Nodal Coordinate Formulation With Multiple Nonlinear Time Scales
,”
J. Syst. Des. Dyn.
,
1
, pp.
491
500
10.1299/jsdd.1.491.
102.
Lan
,
P.
, and
Shabana
,
A. A.
,
2010
, “
Integration of B-spline Geometry and ANCF Finite Element Analysis
,”
Nonlinear Dyn.
,
61
(
1–2
), pp.
193
206
.10.1007/s11071-009-9641-6
103.
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2012
, “
Comparison Between ANCF and B-Spline Surfaces
,”
Proceedings of the Second Joint International Conference on Multibody System Dynamics
.
104.
Sanborn
,
G. G.
, and
Shabana
,
A. A.
,
2009
, “
On the Integration of Computer Aided Design and Analysis Using the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
22
(
2
), pp.
181
197
.10.1007/s11044-009-9157-3
105.
Yamashita
,
H.
, and
Sugiyama
,
H.
,
2011
, “
Numerical Convergence of Finite Element Solutions of Nonrational B-Spline Element and Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
67
(
1
), pp.
177
189
.10.1007/s11071-011-9970-0
106.
Shabana
,
A. A.
,
Hamed
,
A. M.
,
Mohamed
,
A.-N.
,
Jayakumar
,
P.
, and
Letherwood
,
M. D.
,
2102
, “
Use of B-Spline in the Finite Element Analysis: Comparison With ANCF Geometry
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011008
.10.1115/1.4004377
107.
Hamed
,
A. M.
,
Shabana
,
A. A.
, and
Paramsothy
,
J.
,
2011
, “
Nonstructural Geometric Discontinuities in Finite Element/Multibody System Analysis
,”
Nonlinear Dyn.
,
66
(
4
), pp.
809
824
.10.1007/s11071-011-9953-1
108.
Lan
,
P.
, and
Shabana
,
A. A.
,
2010
, “
Rational Finite Elements and Flexible Body Dynamics
,”
ASME J. Vibr. Acoust.
,
132
(
4
), p.
041007
.10.1115/1.4000970
109.
Sanborn
,
G. G.
, and
Shabana
,
A. A.
,
2009
, “
A Rational Finite Element Method Based on the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
58
(
3
), pp.
565
572
.10.1007/s11071-009-9501-4
110.
Kane
,
T. R.
,
Ryan
,
R. R.
, and
Banerjee
,
A. K.
,
1987
, “
Dynamics of a Cantilever Beam Attached to a Moving Base
,”
J. Guid. Control Dyn.
,
10
, pp.
139
151
.10.2514/3.20195
111.
Wu
,
S. C.
, and
Haug
,
E. J.
,
1988
, “
Geometric Non-Linear Substructuring for Dynamics of Flexible Mechanical Systems
,”
Int. J. Numer. Methods Eng.
,
26
, pp.
2211
2226
.10.1002/nme.1620261006
112.
García-Vallejo
,
D.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2005
, “
Finite Element Analysis of the Geometric Stiffening Effect. Part 1: A Correction in the Floating Frame of Reference Formulation
,”
Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
219
, pp.
187
202
.
113.
Valverde
,
J.
, and
García-Vallejo
,
D.
,
2009
, “
Stability Analysis of a Substructuring Model of the Rotating Beam
,”
Nonlinear Dyn.
,
55
, pp.
355
372
.10.1007/s11071-008-9369-8
114.
García-Vallejo
,
D.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2005
, “
Finite Element Analysis of the Geometric Stiffening Effect. Part 2: Non-Linear Elasticity
,”
Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
219
, pp.
203
211
10.1243/146441905X10041.
115.
Maqueda
,
L. G.
,
Bauchau
,
O. A.
, and
Shabana
,
A. A.
,
2008
, “
Effect of the Centrifugal Forces on the Finite Element Eigenvalue Solution of a Rotating Blade: A Comparative Study
,”
Multibody Syst. Dyn.
,
19
, pp.
281
302
.10.1007/s11044-007-9070-6
116.
Zhao
,
J.
,
Tian
,
Q.
, and
Hu
,
H.
,
2011
, “
Modal Analysis of a Rotating Thin Plate via Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041013
.10.1115/1.4003975
117.
Kerkkänen
,
K. S.
,
García-Vallejo
,
D.
, and
Mikkola
,
A. M.
,
2006
, “
Modeling of Belt-Drives Using a Large Deformation Finite Element Formulation
,”
Nonlinear Dyn.
,
43
, pp.
239
256
.10.1007/s11071-006-7749-5
118.
Dufva
,
K.
,
Kerkkänen
,
K.
,
Maqueda
,
L. G.
, and
Shabana
,
A. A.
,
2007
, “
Nonlinear Dynamics of Three-Dimensional Belt Drives Using the Finite-Element Method
,”
Nonlinear Dyn.
,
48
, pp.
449
466
.10.1007/s11071-006-9098-9
119.
Maqueda
,
L. G.
,
Mohamed
,
A.-N. A.
, and
Shabana
,
A. A.
,
2010
, “
Use of General Nonlinear Material Models in Beam Problems: Application to Belts and Rubber Chains
,”
ASME J. Comput. Nonlinear Dyn.
,
5
, p.
021003
.10.1115/1.4000795
120.
Čepon
,
G.
,
Manin
,
L.
, and
Boltežar
,
M.
,
2009
, “
Introduction of Damping Into the Flexible Multibody Belt-Drive Model: A Numerical and Experimental Investigation
,”
J. Sound Vib.
,
324
, pp.
283
296
.10.1016/j.jsv.2009.02.001
121.
Čepon
,
G.
, and
Boltežar
,
M.
,
2008
, “
Dynamics of a Belt-Drive System Using a Linear Complementarity Problem for Belt-Pulley Contact Description
,”
J. Sound Vib.
,
319
, pp.
1019
1035
.10.1016/j.jsv.2008.07.005
122.
Yu
,
L.
,
Zhao
,
Z.
, and
Ren
,
G.
,
2010
, “
Multibody Dynamics Model of Web Guiding System With Moving Web
,”
ASME J. Dyn. Syst., Meas., Control
,
132
, p.
051004
.10.1115/1.4001797
123.
Omar
,
M. A.
,
Shabana
,
A. A.
,
Mikkola
,
A. M.
,
Loh
,
W. Y.
, and
Basch
,
R.
,
2004
, “
Multibody System Modeling of Leaf Springs
,”
J. Vib. Control
,
10
, pp.
1601
1638
.10.1177/1077546304042047
124.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2009
, “
Nonlinear Elastic Ring Tire Model Using the Absolute Nodal Coordinate Formulation
,”
Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
223
, pp.
211
219
10.1243/14644193JMBD184.
125.
Seo
,
J. H.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2005
, “
Three-Dimensional Large Deformation Analysis of the Multibody Pantograph/Catenary Systems
,”
Nonlinear Dyn.
,
42
, pp.
199
215
.10.1007/s11071-005-2789-9
126.
Seo
,
J. H.
,
Kim
,
S. W.
,
Jung
,
I. H.
,
Park
,
T. W.
,
Mok
,
J. Y.
,
Kim
,
Y. G.
, and
Chai
,
J. B.
,
2006
, “
Dynamic Analysis of a Pantograph-Catenary System Using Absolute Nodal Coordinates
,”
Veh. Syst. Dyn.
,
44
, pp.
615
630
.10.1080/00423110500373721
127.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
, and
Sugiyama
,
H.
,
2008
,
Railroad Vehicle Dynamics: A Computational Approach
,
CRC
,
Boca Raton, FL
.
128.
Kato
,
I.
,
Terumichi
,
Y.
,
Adachi
,
M.
, and
Sogabe
,
K.
,
2005
, “
Dynamics of Track/Wheel Systems on High-Speed Vehicles
,”
J. Mech. Sci. Technol.
,
1
, pp.
328
335
.10.1007/BF02916151
129.
Gantoi
,
F. M.
,
Brown
,
M. A.
, and
Shabana
,
A. A.
,
2010
, “
ANCF Finite Element/Multibody System Formulation of the Ligament/Bone Insertion Site Constraints
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031006
.10.1115/1.4001373
130.
Weed
,
D.
,
Maqueda
,
L. G.
,
Brown
,
M. A.
,
Hussein
,
B. A.
, and
Shabana
,
A. A.
,
2010
, “
A New Nonlinear Multibody/Finite Element Formulation for Knee Joint Ligaments
,”
Nonlinear Dyn.
,
60
, pp.
357
367
.10.1007/s11071-009-9600-2
131.
Brown
,
M. A.
,
Gantoi
,
F. M.
, and
Shabana
,
A. A.
,
2010
, “
ANCF Finite Element/Multibody System Formulation of the Ligament/Bone Insertion Site Constraints
,”
ASME J. Comput. Nonlinear Dyn.
,
5
, p.
031006
.10.1115/1.4001373
132.
Stangl
,
M.
,
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2009
, “
A Large Deformation Planar Finite Element for Pipes Conveying Fluid Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
4
, p.
031009
.10.1115/1.3124091
133.
Vohar
,
B.
,
Kegl
,
M.
, and
Ren
,
Z.
,
2008
, “
Implementation of an ANCF Beam Finite Element for Dynamic Response Optimization of Elastic Manipulators
,”
Eng. Optimiz.
,
40
, pp.
1137
1150
.10.1080/03052150802317457
134.
Nachbagauer
,
K.
,
Zehetner
,
C.
, and
Gerstmayr
,
J.
,
2011
,
Nonlinear Finite Element Modelling of Moving Beam Vibrations Controlled by Distributed Actuators, Advanced Dynamics and Model-Based Control of Structures and Machines
,
Springer
,
Vienna
, pp.
167
174
.
135.
Sugiyama
,
H.
,
Mikkola
,
A. M.
, and
Shabana
,
A. A.
,
2003
, “
A Non-Incremental Nonlinear Finite Element Solution for Cable Problems
,”
ASME J. Mech. Des.
,
125
, pp.
746
756
.10.1115/1.1631569
136.
He
,
J.
, and
Lilley
,
C. M.
,
2009
, “
The Finite Element Absolute Nodal Coordinate Formulation Incorporated With Surface Stress Effect to Model Elastic Bending Nanowires in Large Deformation
,”
Comput. Mech.
,
44
, pp.
395
403
.10.1007/s00466-009-0380-9
137.
Khude
,
K.
,
Melanz
,
D.
,
Stanciulescu
,
I.
, and
Negrut
,
D.
,
2011
, “
A Parallel GPU Implementation of the Absolute Nodal Coordinate Formulation With a Frictional/Contact Model for the Simulation of Large Flexible Body Systems
,”
Proceedings of the 8th International Conference on Multibody Systems, Nonlinear Dynamics and Control
.
You do not currently have access to this content.