The dynamics of hyperchaotic and fractional-order systems have increasing attracted attention in recent years. In this paper, we mix two complex dynamics to construct a new telecommunication system. Using a hyperchaotic fractional order system, we propose a novel synchronization scheme between receiver and transmitter which increases the security of data transmission and communication. Indeed, this is first work that can open a new way in secure communication system.

References

References
1.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Some Applications of Fractional Calculus in Suppression of Chaotic Oscillations
,”
IEEE Trans. Ind. Electron.
,
55
(
11
), pp.
4094
5001
.10.1109/TIE.2008.925774
2.
Gao
,
X.
,
2006
, “
Chaos in Fractional Order Autonomous System and its Control
,”
IEEE Proc.
,
2
, pp.
2577
2581
.
3.
Yu
,
J.
,
2008
, “
Fractional Chaos Based Communication Systems—An Introduction
,”
IEEE Proc.
,
48
, pp.
633
636
.
4.
Rössler
,
O. E.
,
1979
, “
An Equation for Hyperchaos
,”
Phys. Lett. A
,
71
(
2–3
), pp.
155
157
.10.1016/0375-9601(79)90150-6
5.
Kapitaniak
,
T.
, and
Chua
,
L. O.
,
1994
, “
Hyperchaotic Attractors of Unidirectionally Coupled Chua's Circuits
,”
Int. J. Bifurcation Chaos
,
4
(
2
), pp.
477
482
.10.1142/S0218127494000356
6.
Li
,
Y.
,
Chen
,
G.
, and
Tang
,
W. K. S.
,
2005
, “
Hyperchaotic Chen's System and its Generation
,”
IEEE Trans. Circuits Syst. II
,
52
, pp.
204
207
.10.1109/TCSII.2004.842413
7.
Li
,
Y.
,
Tang
,
W. K. S.
, and
Chen
,
G.
,
2005
, “
Generation Hyperchaos ViaState Feedback Control
,”
Int. J. Bifurcation Chaos
,
15
(
10
), pp.
3367
3375
.10.1142/S0218127405013988
8.
Chen
,
A.
,
Lu
,
J.
,
,
J.
, and
Yu
,
S.
,
2006
, “
Generating Hyperchaotic Lü Attractor via State Feedback Control
,”
Physica A
,
364
, pp.
103
110
.10.1016/j.physa.2005.09.039
9.
Jia
,
Q.
,
2007
, “
Hyperchaos Generated From the Lorenz Chaotic System and Its Control
,”
Phys. Lett. A
,
366
(
3
), pp.
217
222
.10.1016/j.physleta.2007.02.024
10.
Jia
,
Q.
,
2007
, “
Generation and Suppression of a New Hyperchaotic System With Double Hyperchaotic Attractors
,”
Phys. Lett. A
,
371
(
5–6
), pp.
410
415
.10.1016/j.physleta.2007.06.038
11.
Wolf
,
A.
,
Swift.
J.
,
Swinney
,
H.
, and
Vastano
,
J.
,
1985
, “
Determining Lyapunov Exponents From a Time Series
,”
Physica D
,
16
(
3
), pp.
285
317
.10.1016/0167-2789(85)90011-9
12.
Ahmad
,
W.
,
El-Khazali
,
R.
, and
El-Wakil
,
A.
,
2001
, “
Fractional-Order Wien-Bridge Oscillator
,”
Electron. Lett.
,
37
(
18
), pp.
1110
1112
.10.1049/el:20010756
13.
Wang
,
Y.
, and
Li
,
C.
,
2007
, “
Does the Fractional Brusselator With Efficient Dimension Less Than 1 Have a Limit Cycle?
,”
Phys. Lett. A
,
363
(
5–6
), pp.
414
419
.10.1016/j.physleta.2006.11.038
14.
Milner
,
S. H.
,
Elmirghani
,
J. M. H.
, and
Cryan
,
R. A.
,
1996
, “
Optimal Echo Path Modelling Using Chaotic Modulated Speech
,”
Eur. Trans Telecommun. Relat. Technol.
,
7
(
3
), pp.
285
289
.10.1002/ett.4460070310
15.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Calculus and Fractional Differential Equations
,
Wiley
,
New York
.
16.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
River Edge, NJ
.
17.
Debnath
,
L.
,
2003
, “
Recent Applications of Fractional Calculus to Science and Engineering
,”
Int. J. Math Sci.
,
54
, pp.
3413
3442
.10.1155/S0161171203301486
18.
Davis
,
G. B.
,
Kohandel
,
M.
,
Sivaloganathan
,
S.
, and
Tenti
,
G.
,
2006
, “
The Constitutive Properties of the Brain Paraenchyma—Part 2: Fractional Derivative Approach
,”
Med. Eng. Phys.
,
28
(
5
), pp.
455
459
.10.1016/j.medengphy.2005.07.023
19.
Scalas
,
E.
,
Gorenflo
,
R.
, and
Mainardi
,
F.
,
2000
, “
Fractional Calculus and Continuous-Time Finance
,”
Physica A
,
284
(
1–4
), pp.
376
384
.10.1016/S0378-4371(00)00255-7
20.
Ahmad
,
W.
, and
El-Khazali
,
R.
,
2007
, “
Fractional-Order Dynamical Models of Love
,”
Chaos, Solitons Fractals
,
33
(
4
), pp.
1367
1375
.10.1016/j.chaos.2006.01.098
21.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2012
,
Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos)
,
World Scientific
,
Singapore
.
22.
Li
,
C.
, and
Deng
,
W.
,
2007
, “
Remarks on Fractional Derivatives
,”
Appl. Math Comput.
,
187
(
2
), pp.
777
784
.10.1016/j.amc.2006.08.163
23.
Heidari-Bateni
,
G.
, and
McGillem
,
C.
,
1994
, “
A Chaotic Direct-Sequence Spread Spectrum Communication System
,”
IEEE Trans. Commun.
,
42
, pp.
1524
1527
.10.1109/TCOMM.1994.582834
24.
Satish
,
K.
,
Jayakar
,
T.
,
Tobin
,
C.
,
Madhavi
,
K.
, and
Murali
,
K.
,
2004
, “
Chaos Based Spread Spectrum Image Steganography
,”
IEEE Trans. Consum. Electron.
,
50
(2)
, pp.
587
590
.10.1109/TCE.2004.1309431
25.
Kolumban
,
G.
, and
Kennedy
,
M. P.
,
2002
, “
The Role of Synchronization in Digital Communications Using Chaos-Part III. Performance Bounds for Correlation Receivers
,”
IEEE Trans. Circuits Syst.
,
47
(
3
), pp.
1673
1683
.
26.
Dachselt
,
F.
, and
Schwatrz
,
W.
,
2001
, “
Chaos and Cryptography
,”
IEEE Trans. Circuit Syst.
,
48
, pp.
1498
1509
.10.1109/TCSI.2001.972857
27.
Dadras
,
S.
, and
Momeni
,
H. R.
,
2010
, “
Four-Scroll Hyperchaos and Four-Scroll Chaos Evolved From a Novel 4D Nonlinear, Smooth Autonomous System
,”
Phys. Lett. A
,
374
, pp.
1368
1373
.10.1016/j.physleta.2010.01.030
28.
Ruan
,
H.
,
Zhai
,
T.
, and
Yaz
,
E. F.
,
2003
, “
A Chaotic Secure Chaotic Communication Scheme With Extended Kalman Filter Based Parameter Estimation
,”
IEE Proc.: Control Theory Appl.
,
1
, pp.
404
408
.
29.
Yang
,
T.
,
Wu
,
C. W.
, and
Chua
,
L.
,
1997
, “
Cryptography Based on Chaotic Systems
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
,
44
(
5
), pp.
469
472
.10.1109/81.572346
30.
Haykin
,
S. S.
,
1994
,
Communication Systems
,
3rd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.