Fatigue cracking of the rotor shaft is an important fault observed in the rotating machinery of key industries, which can lead to catastrophic failure. Nonlinear dynamics of a cracked rotor system with fractional order damping is investigated by using a response-dependent breathing crack model. The fourth-order Runge–Kutta method and tenth-order continued fraction expansion-Euler (CFE-Euler) method are introduced to simulate the proposed system equation of fractional order cracked rotors. The effects of the derivative order of damping, rotating speed ratio, crack depth, orientation angle of imbalance relative to the crack direction, and mass eccentricity on the system dynamics are demonstrated by using a bifurcation diagram, Poincaré map, and rotor trajectory diagram. The simulation results show that the rotor system displays chaotic, quasi-periodic, and periodic motions as the fractional order increases. It is also observed that the imbalance eccentricity level, crack depth, rotational speed, fractional damping, and crack angle all have considerable influence on the nonlinear behavior of the cracked rotor system. Finally, the experimental results verify the effectiveness of the theoretical analysis.

References

References
1.
Wauer
,
J.
,
1990
, “
On the Dynamics of Cracked Rotors: A Literature Survey
,”
Appl. Mech. Rev.
,
43
(
1
), pp.
13
17
.10.1115/1.3119157
2.
Gasch
,
R.
,
1993
, “
A Survey of the Dynamic Behaviour of a Simple Rotating Shaft With a Transverse Crack
,”
J. Sound Vib.
,
160
(
2
), pp.
313
332
.10.1006/jsvi.1993.1026
3.
Dimarogonas
,
A.
,
1996
, “
Vibration of Cracked Structures: A State of The Art Review
,”
Eng. Fract. Mech.
,
55
(
5
), pp.
831
857
.10.1016/0013-7944(94)00175-8
4.
Qian
,
G.
,
Gu
,
S.
, and
Jiang
,
J.
,
1990
, “
The Dynamic Behavior and Crack Detection of a Beam With Crack
,”
J. Sound Vib.
,
138
(
2
), pp.
233
243
.10.1016/0022-460X(90)90540-G
5.
Chati
,
M.
,
Rand
,
R.
, and
Mukherjee
,
S.
,
1997
, “
Modal Analysis of a Cracked Beam
,”
J. Sound Vib.
,
207
(
2
), pp.
249
270
.10.1006/jsvi.1997.1099
6.
Chondros
,
T. G.
,
2001
, “
Vibration of a Beam With a Breathing Crack
,”
J. Sound Vib.
,
239
(
1
), pp.
57
67
.10.1006/jsvi.2000.3156
7.
Luo
,
T.
, and
Wu
,
J.
,
2006
, “
A Generalized Algorithm for the Study of Bilinear Vibrations of Cracked Structures
,”
Struct. Eng. Mech.
,
23
(
1
), pp.
1
13
.
8.
Darpe
,
A. K.
,
Chawla
,
A.
, and
Gupta
,
K.
,
2002
, “
Analysis of the Response of a Cracked Jeffcott Rotor to Axial Excitation
,”
J. Sound Vib.
,
249
(
3
), pp.
429
445
.10.1006/jsvi.2001.3870
9.
Patel
,
T. H.
, and
Darpe
,
A. K.
,
2008
, “
Influence of Crack Breathing Model on Nonlinear Dynamics of a Cracked Rotor
,”
J. Sound Vib.
,
311
(
3–5
), pp.
953
972
.10.1016/j.jsv.2007.09.033
10.
Sinou
,
J. J.
,
2007
, “
Effects of a Crack on the Stability of a Nonlinear Rotor System
,”
Int. J. Nonlinear Mech.
,
42
(
7
), pp.
959
972
.10.1016/j.ijnonlinmec.2007.04.002
11.
Sekhar
,
A. S.
, and
Prabhu
,
B. S.
,
1992
, “
Crack Detection and Vibration Characteristics of Cracked Shafts
,”
J. Sound Vib.
,
157
(
2
), pp.
375
381
.10.1016/0022-460X(92)90690-Y
12.
Huang
,
S.
,
Huang
,
Y.
, and
Shieh
,
S. M.
,
1993
, “
Vibration and Stability of a Rotating Shaft Containing a Transverse Crack
,”
J. Sound Vib.
,
162
(
3
), pp.
387
401
.10.1006/jsvi.1993.1129
13.
Wu
,
M.
, and
Huang
,
S.
,
1998
, “
Vibration and Crack Detection of a Rotor With Speed-dependent Bearings
,”
Int. J. Mech. Sci.
,
40
(
6
), pp.
545
555
.10.1016/S0020-7403(97)00076-3
14.
Sinou
,
J. J.
, and
Lees
,
A. W.
,
2005
, “
The Influence of Cracks in Rotating Shafts
,”
J. Sound Vib.
,
285
(
4–5
), pp.
1015
1037
.10.1016/j.jsv.2004.09.008
15.
Darpe
,
A. K.
,
Gupta
,
K.
, and
Chawla
,
A.
,
2004
, “
Transient Response and Breathing Behaviour of a Cracked Jeffcott Rotor
,”
J. Sound Vib.
,
272
(
1–2
), pp.
207
243
.10.1016/S0022-460X(03)00327-4
16.
Pennacchi
,
P.
, and
Bachschmid
,
N.
,
2006
, “
A Model-Based Identification Method of Transverse Cracks in Rotating Shafts Suitable for Industrial Machines
,”
Mech. Syst. Signal Process
,
20
(
8
), pp.
2112
2147
.10.1016/j.ymssp.2005.04.005
17.
Adewusi
,
S. A.
, and
Al-Bedoor
,
B. O.
,
2002
, “
Experimental Study on the Vibration of an Overhung Rotor With a Propagating Transverse Crack
,”
Shock Vib.
,
9
(
3
), pp.
91
104
. Available at: http://iospress.metapress.com/content/7qghq5mrxqq557qx/
18.
Debnath
,
L.
,
2003
, “
Recent Applications of Fractional Calculus to Science and Engineering
,”
Int. J. Math. Math. Sci.
,
2003
(
54
), pp.
3413
3442
.10.1155/S0161171203301486
19.
Padovan
,
J.
, and
Sawicki
,
J. T.
,
1998
, “
Nonlinear Vibrations of Fractionally Damped Systems
,”
Nonlinear Dyn.
,
16
(
4
), pp.
321
336
.10.1023/A:1008289024058
20.
Machado
,
J. T.
, and
Silva
,
M. F.
,
2010
, “
Some Applications of Fractional Calculus in Engineering
,”
Math. Probl. Eng.
,
2010
, p.
639801
.10.1155/2010/639801
21.
Machado
,
J. T.
, and
Galhano
,
A.
,
2008
, “
Fractional Dynamics: A Statistical Perspective
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021201
.10.1115/1.2833481
22.
Sorrentino
,
S.
, and
Fasana
,
A.
,
2007
, “
Finite Element Analysis of Vibrating Linear Systems With Fractional Derivative Viscoelastic Models
,”
J. Sound Vib.
,
299
(
4–5
), pp.
839
853
.10.1016/j.jsv.2006.07.027
23.
Cao
,
J.
,
Ma
,
C.
,
Xie
,
H.
, and
Jiang
,
Z.
,
2010
, “
Nonlinear Dynamics of Duffing System With Fractional Order Damping
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041012
.10.1115/1.4002092
24.
Chen
,
Y.
, and
Sheng
,
H.
,
2010
, “
Optimal Time-Delayed Fractional-Order Damping
,”
Proceedings of the 3rd International Conference on Dynamics, Vibration and Control
, Hangzhou, China, May.
25.
Mainardi
,
F.
, and
Gorenflo
,
R.
,
2007
, “
Time-Fractional Derivatives in Relaxation Processes: A Tutorial Survey
,”
Fractional Calculus Appl. Anal.
,
10
(
3
), pp.
269
308
.
26.
Mainrdi
,
F.
,
2009
,
Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
,
World Scientific
,
Singapore
.
27.
Borowiec
,
M.
,
Litak
,
G.
, and
Syta
,
A.
,
2007
, “
Vibration of the Duffing Oscillator: Effect of Fractional Damping
,”
Shock Vib.
,
14
(
1
), pp.
29
36
.
28.
Hartley
,
T.
, and
Lorenzo
,
C. F.
,
2004
, “
A Frequency-Domain Approach to Optimal Fractional-Order Damping
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
69
84
.10.1007/s11071-004-3747-7
29.
Maia
,
N.
,
Silva
,
J.
, and
Ribeiro
,
A.
,
1998
, “
On a General Model for Damping
,”
J. Sound Vib.
,
218
(
5
), pp.
749
767
.10.1006/jsvi.1998.1863
30.
Rossikhin
,
Y.
, and
Shitikova
,
M.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
Appl. Mech. Rev.
63
(
1
), p.
010801
.10.1115/1.4000563
31.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
32.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic Press
,
New York
.
33.
Chen
,
Y.
, and
Moore
,
K. L.
,
2002
, “
Discretization Schemes for Fractional-Order Differentiators and Integrators
,”
IEEE Trans. Circuits Syst.
,
49
(
3
), pp.
363
367
.10.1109/81.989172
34.
Ma
,
C.
, and
Hori
,
Y.
,
2004
, “
The Time-Scaled Trapezoidal Integration Rule for Discrete Fractional Order Controllers
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
171
180
.10.1007/s11071-004-3753-9
35.
Machado
,
J. A.
,
2009
, “
Fractional Derivatives: Probability Interpretation and Frequency Response of Rational Approximations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
9–10
), pp.
3492
3497
.10.1016/j.cnsns.2009.02.004
36.
Cao
,
J.
,
Ma
,
C.
, and
Jiang
,
Z.
,
2011
, “
Nonlinear Dynamic Analysis of Fractional Order Rub-impact Rotor System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
3
), pp.
1443
1463
.10.1016/j.cnsns.2010.07.005
37.
Gao
,
J.
, and
Zhu
,
X.
,
1992
, “
Study on the Model of the Shaft Crack Opening and Closing
,”
Chinese J. Appl. Mech.
,
9
(
1
), pp.
108
112
.
38.
Jia
,
J.
,
Shen
,
X.
, and
Hua
H.
,
2007
, “
Viscoelastic Behavior Analysis and Application of the Fractional Derivative Maxwell Model
,”
J. Vib. Control
,
13
(
4
), pp.
385
401
.10.1177/1077546307076284
39.
Shokooh
,
A.
, and
Suarez
,
L.
,
1999
, “
A Comparison of Numerical Methods Applied to a Fractional Model of Damping Materials
,”
J. Vib. Control
,
5
(
3
), pp.
331
354
.10.1177/107754639900500301
You do not currently have access to this content.