Fractional order integrodifferential equations cannot be directly solved like ordinary differential equations. Numerical methods for such equations have additional algorithmic complexities. We present a particularly simple recipe for solving such equations using a Galerkin scheme developed in prior work. In particular, matrices needed for that method have here been precisely evaluated in closed form using special functions, and a small Matlab program is provided for the same. For equations where the highest order of the derivative is fractional, differential algebraic equations arise; however, it is demonstrated that there is a simple regularization scheme that works for these systems, such that accurate solutions can be easily obtained using standard solvers for stiff differential equations. Finally, the role of nonzero initial conditions is discussed in the context of the present approximation method.

References

References
1.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional Order Systems and Control - Fundamentals and Applications
, Advanced Industrial Control Series,
Springer-Verlag
,
London
.
2.
Caponetto
,
R.
,
Dongola
,
G.
,
Fortuna
,
L.
, and
Petras
,
I.
,
2010
,
Fractional Order Systems: Modeling and Control Applications
,
World Scientific
,
Singapore
.
3.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego
, pp.
103
108
.
4.
Chatterjee
,
A.
,
2005
, “
Statistical Origins of Fractional Derivatives in Viscoelasticity
,”
J. Sound Vib.
,
284
(
3–5
), pp.
1239
1245
.10.1016/j.jsv.2004.09.019
5.
Singh
,
S. J.
, and
Chatterjee
,
A.
,
2006
, “
Galerkin Projections and Finite Elements for Fractional Order Derivatives
,”
Nonlinear Dyn.
,
45
, pp.
183
206
.10.1007/s11071-005-9002-z
6.
Singh
,
S. J.
, and
Chatterjee
,
A.
,
2011
, “
Unified Galerkin- and DAE-Based Approximation of Fractional Order Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021010
.10.1115/1.4002516
7.
Yuan
,
L.
, and
Agrawal
,
O. P.
,
2002
, “
A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives
,”
ASME J. Vibr. Acoust.
,
124
, pp.
321
324
.10.1115/1.1448322
8.
Diethelm
,
K.
,
2009
, “
An Improvement of a Nonclassical Numerical Method for the Computation of Fractional Derivatives
,”
ASME J. Vibr. Acoust.
,
131
(
1
), p.
014502
.10.1115/1.2981167
9.
Kumar
,
P.
, and
Agrawal
,
O. P.
,
2006
, “
Numerical Scheme for the Solution of Fractional Differential Equations of Order Greater Than One
,”
J. Comput. Nonlinear Dynam.
,
1
(
2
), pp.
178
186
.10.1115/1.2166147
10.
Podlubny
,
I.
,
Chechkin
,
A. V.
,
Skovranek
,
T.
,
Chen
,
Y. Q.
, and
Vinagre
B.
,
2009
, “
Matrix Approach to Discrete Fractional Calculus II: Partial Fractional Differential Equations
,”
J. Comput. Phys.
,
228
(
8
), pp.
3137
3153
.10.1016/j.jcp.2009.01.014
11.
Podlubny
,
I.
,
2000
, “
Matrix Approach to Discrete Fractional Calculus
,”
Fractional Calculus Appl. Anal.
,
3
(
4
), pp.
359
386
.
12.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2010
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1594
1609
.10.1016/j.camwa.2009.08.003
13.
Sabatier
,
J.
,
Merveillaut
,
M.
,
Malti
,
R.
, and
Oustaloup
,
A.
,
2010
, “
How to Impose Physically Coherent Initial Conditions to a Fractional System?
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
(
5
), pp.
1318
1326
.10.1016/j.cnsns.2009.05.070
14.
Lorenzo
,
C. F.
,
Hartley
,
T. T.
, and
Adams
,
J. L.
,
2009
, “
The Inverted Initialization Problem for Fractional-Order Derivatives
,”
Phys. Script.
,
136
, p.
014029
.10.1088/0031-8949/2009/T136/014029
15.
Hartley
,
T. T.
, and
Lorenzo
,
C. F.
,
2002
, “
Dynamics and Control of Initialized Fractional-Order Systems,
Nonlinear Dyn.
,
29
(
1
), pp.
201
233
.10.1023/A:1016534921583
You do not currently have access to this content.