Due to its useful applications in real world processes, synchronization of chaotic systems has attracted the attention of many researchers of mathematics, physics and engineering sciences. In practical situations, many chaotic systems are inevitably disturbed by model uncertainties and external disturbances. Furthermore, in practice, it is hard to determine the precise values of the chaotic systems’ parameters in advance. Besides, from a practical point of view, it is more desirable to achieve synchronization in a given finite time. In this paper, we investigate the problem of finite-time chaos synchronization between two different chaotic systems in the presence of model uncertainties, external disturbances and unknown parameters. Both autonomous and non-autonomous chaotic systems are taken into account. To tackle the unknown parameters, appropriate adaptation laws are proposed. Using the adaptation laws and finite-time control technique, an adaptive robust finite-time controller is designed to guarantee that the state trajectories slave system converge to the state trajectories of the master system in a given finite time. Some numerical simulations are presented to verify the robustness and usefulness of the proposed finite-time control technique.

References

References
1.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1990
, “Synchronization in chaotic systems,”
Phys. Rev. Lett.
64
, pp.
8
21
.10.1103/PhysRevLett.64.821
2.
Ge
,
Z.
, and
Yang
,
C.
,
2009
, “
Chaos Synchronization and Chaotization of Complex Chaotic Systems in Series Form by Optimal Control
,”
Chaos, Solitons Fractals
42
, pp.
994
1002
.10.1016/j.chaos.2009.02.026
3.
Zhao
,
Y.
, 2009, “
Synchronization of Two Coupled Systems of J-J Type Using Active Sliding Mode Control
,”
Chaos, Solitons Fractals
42
, pp.
3035
3041
.10.1016/j.chaos.2009.04.014
4.
Chang
,
W.
,
2009
, “
PID Control for Chaotic Synchronization Using Particle Swarm Optimization
,”
Chaos, Solitons Fractals
39
, pp.
910
917
.10.1016/j.chaos.2007.01.064
5.
Chen
,
H.
,
2009
, “
Chaos Control and Global Synchronization of Liu Chaotic Systems Using Linear Balanced Feedback Control
,”
Chaos, Solitons Fractals
40
, pp.
466
473
.10.1016/j.chaos.2007.07.098
6.
Guo
,
W.
,
Chen
,
S.
, and
Zhou
,
H.
,
2009
, “
A Simple Adaptive-Feedback Controller for Chaos Synchronization
,”
Chaos, Solitons Fractals
39
, pp.
316
321
.10.1016/j.chaos.2007.01.096
7.
Chen
,
Y.
, and
Chang
,
C.
,
2009
, “
Impulsive Synchronization of Lipchitz Chaotic Systems
,”
Chaos, Solitons Fractals
40
, pp.
1221
1228
.10.1016/j.chaos.2007.08.084
8.
Lee
,
S. M.
,
Ji
,
D. H.
,
Park
,
J. H.
, and
Won
,
S. C.
,
2008
, “
H∞ Synchronization of Chaotic Systems Via Dynamic Feedback Approach
,”
Phys. Lett. A
372
, pp.
4905
4912
.10.1016/j.physleta.2008.05.047
9.
Aghababa
,
M. P.
, and
Akbari
,
M. E.
,
2012
, “
A Chattering-Free Robust Adaptive Sliding Mode Controller for Synchronization of Two Different Chaotic Systems with Unknown Uncertainties and External Disturbances
,”
Appl. Math. Comput.
218
, pp.
5757
5768
.10.1016/j.amc.2011.11.080
10.
Aghababa
,
M. P.
, and
Feizi
,
H.
,
2012
, “
Design of a Sliding Mode Controller for Synchronizing Chaotic Systems With Parameter and Model Uncertainties and External Disturbances
,”
Trans. Institute Meas. Control (London)
,
34
(
8
), pp.
990
997
.10.1177/0142331211434657
11.
Cai
,
N.
,
Jing
,
Y.
, and
Zhang
,
S.
,
2010
, “
Modified Projective Synchronization of Chaotic Systems With Disturbances Via Active Sliding Mode Control
,”
Commun. Nonlinear. Sci. Numer. Simul.
,
15
, pp.
1613
1620
.10.1016/j.cnsns.2009.06.012
12.
Zhang
,
H.
, and
Ma
,
X.
,
2004
, “
Synchronization of Uncertain Chaotic Systems With Parameters Perturbation Via Active Control
,”
Chaos, Solitons Fractals
21
, pp.
39
47
.10.1016/j.chaos.2003.09.014
13.
Asheghan
,
M. M.
, and
Beheshti
,
M.T.H.
,
2009
, “
An LMI Approach to Robust Synchronization of a Class of Chaotic Systems With Gain Variations
,”
Chaos, Solitons Fractals
42
, pp.
1106
1111
.10.1016/j.chaos.2009.03.152
14.
Yau
,
H.
, and
Shieh
,
C.
,
2008
, “
Chaos Synchronization Using Fuzzy Logic Controller
,”
Nonlinear Anal.: Real World Appl.
,
9
, pp.
1800
1810
.10.1016/j.nonrwa.2007.05.009
15.
Chen
,
C.
,
2009
, “
Quadratic Optimal Neural Fuzzy Control for Synchronization of Uncertain Chaotic Systems
,”
Expert Sys. Applic.
,
36
, pp.
11827
11835
.10.1016/j.eswa.2009.04.007
16.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
Chaos Suppression of a Class of Unknown Uncertain Chaotic Systems Via Single Input
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
, pp.
3533
3538
.10.1016/j.cnsns.2012.01.004
17.
Aghababa
,
M. P.
, and
Feizi
,
H.
,
2012
, “
Nonsingular Terminal Sliding Mode Approach Applied to Synchronize Chaotic Systems With Unknown Parameters and Nonlinear Inputs
,”
Chin. Phys. B
21
, p.
060506
10.1088/1674-1056/21/6/060506.
18.
Aghababa
,
M. P.
, and
A.
Heydari
,
H.
,
2012
, “
Chaos Synchronization Between Two Different Chaotic Systems With Uncertainties, External Disturbances, Unknown Parameters and Input Nonlinearities
,”
Appl. Math. Model.
36
, pp. 1639–1652.
19.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
A General Nonlinear Adaptive Control Scheme for Finite-Time Synchronization of Chaotic Systems With Uncertain Parameters and Nonlinear Inputs
,”
Nonlinear Dyn.
,
69
, pp.
1903
1914
.10.1007/s11071-012-0395-1
20.
Aghababa
,
M. P.
, and
Heydari
,
A.
,
2012
, “
Chaos Synchronization Between Two Different Chaotic Systems With Uncertainties, External Disturbances, Unknown Parameters and Input Nonlinearities
,”
Appl. Math. Model.
,
36
, pp.
1639
1652
.10.1016/j.apm.2011.09.023
21.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
Synchronization of Nonlinear Chaotic Electromechanical Gyrostat Systems With Uncertainties
,”
Nonlinear Dyn.
,
67
, pp.
2689
2701
.10.1007/s11071-011-0181-5
22.
Aghababa
,
M. P.
, 2011, “
A Novel Adaptive Finite-Time Controller for Synchronizing Chaotic Gyros With Nonlinear Inputs
,”
Chin. Phys. B
20
, p.
090505
.10.1088/1674-1056/20/9/090505
23.
Aghababa
,
M. P.
, and
Aghabab
,
H. P.
,
2012
, “
Synchronization of Mechanical Horizontal Platform Systems in Finite Time
,”
Appl. Math. Model.
36
, pp.
4579
4591
.10.1016/j.apm.2011.11.040
24.
Aghababa
,
M. P.
,
2012
, “
Design of an Adaptive Finite-Time Controller for Synchronization of Two Identical/Different Non-Autonomous Chaotic Flywheel Governor Systems
,”
Chin. Phys. B
21
, p.
030502
.10.1088/1674-1056/21/3/030502
25.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
Finite-Time Stabilization of Uncertain Non-Autonomous Chaotic Gyroscopes With Nonlinear Inputs
,”
Appl. Math. Mech.
33
, pp.
155
164
.10.1007/s10483-012-1540-7
26.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2011
, “
Adaptive Finite-Time Stabilization of Uncertain Non-Autonomous Chaotic Electromechanical Gyrostat Systems With Unknown Parameters
,”
Mech. Res. Commun.
38
, pp.
500
505
.10.1016/j.mechrescom.2011.06.005
27.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
Chaos Suppression of Rotational Machine Systems Via Finite-Time Control Method
,”
Nonlinear Dyn.
,
69
, pp.
1881
1888
.10.1007/s11071-012-0393-3
28.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
Finite-Time Stabilization of a Non-Autonomous Chaotic Rotating Mechanical System
,”
J. Franklin Inst.
,
349
, pp.
2875
2888
.10.1016/j.jfranklin.2012.08.004
29.
Aghababa
,
M. P.
, and
Aghababa
,
H. P.
,
2012
, “
Chaos Suppression of Uncertain Gyros in a Given Finite Time
,”
Chin. Phys., B
21
, p.
110505
.10.1088/1674-1056/21/11/110505
30.
Bhat
,
S. P.
, and
Bernstein
,
D. S.
,
2000
, “
Finite-Time Stability of Continuous Autonomous Systems
,”
SIAM J. Control Optim.
,
38
, pp.
751
766
.10.1137/S0363012997321358
31.
Wang
,
H.
,
Han
,
Z.
,
Xie
,
Q.
, and
Zhang
,
W.
,
2009
, “
Sliding Mode Control for Chaotic Systems Based on LMI
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
1410
1417
.10.1016/j.cnsns.2007.12.006
32.
Xiang
,
W.
, and
Huangpu
,
Y.
,
2010
, “
Second-Order Terminal Sliding Mode Controller for a Class of Chaotic Systems With Unmatched Uncertainties
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
3241
3247
.10.1016/j.cnsns.2009.12.012
33.
Wang
,
H.
,
Han
,
Z.
,
Xie
,
Q.
, and
Zhang
,
W.
,
2009
, “
Finite-Time Chaos Control Via Nonsingular Terminal Sliding Mode Control
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
2728
2733
.10.1016/j.cnsns.2008.08.013
34.
Aghababa
,
M. P.
,
Khanmohammadi
,
S.
, and
Alizadeh
,
G.
,
2011
, “
Finite-Time Synchronization of Two Different Chaotic Systems With Unknown Parameters Via Sliding Mode Technique
,”
Appl. Math. Model.
,
35
, pp. 3080–3091.
35.
Li
,
S.
, and
Tian
,
Y.
,
2003
, “
Finite-Time Synchronization of Chaotic Systems
,”
Chaos, Solitons Fractals
15
, pp.
303
310
.10.1016/S0960-0779(02)00100-5
36.
Wang
,
H.
,
Han
,
Z.
,
Xie
,
Q.
, and
Zhang
,
W.
,
2009
,
Finite-Time Synchronization of Uncertain Unified Chaotic Systems Based on CLF
,”
Nonlinear Anal.: Real World Appl.
,
10
, pp.
2842
2849
.10.1016/j.nonrwa.2008.08.010
37.
Wang
,
H.
Han
,
Z.
Xie
,
Q.
and
Zhang
,
W.
,
2009
.
Finite-Time Chaos Synchronization of Unified Chaotic System With Uncertain Parameters
,”
Commun Nonlinear Sci. Numer. Simul.
,
14
, pp.
2239
2247
.10.1016/j.cnsns.2008.04.015
38.
Bowong
,
S.
,
2007
, “
Adaptive Synchronization Between Two Different Chaotic Dynamical Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
, pp.
976
985
.10.1016/j.cnsns.2005.10.003
You do not currently have access to this content.