This paper proposes a three-dimensional autonomous chaotic system which displays some interest dynamical behaviors such as invariable Lyapunov exponent spectrums and controllable signal amplitude. The corresponding fractional version of the proposed system is obtained. A single state controller for synchronization of this fractional-order chaotic system is developed based on the techniques of sliding mode control and adaptive control. Numerical simulations are provided to demonstrate the feasibility of the presented synchronization method.

References

References
1.
Lorenz
,
E. N.
,
1963
, “
Deterministic Non-Periodic Flow
,”
J. Atmos. Sci.
,
20
, pp.
130
141
.10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
2.
Shahverdiev
,
E. M.
, and
Shore
,
K. A.
,
2011
, “
Synchronization in Multiple Time Delay Chaotic Laser Diodes Subject to Incoherent Optical Feedbacks and Incoherent Optical Injection
,”
Nonlinear Anal: Real World Appl.
,
12
, pp.
3114
3124
.10.1016/j.nonrwa.2011.05.011
3.
Li
,
C.
, and
Yu
,
S.
,
2011
, “
Adaptive Chaotic Control of Permanent Magnet Synchronous Motor
,”
Acta Phys. Sin.
,
60
, pp.
120505-1
120505-7
.
4.
Kwon
,
O. M.
,
Park, Ju
H.
,
Lee
,
S. M.
, and
Cha
,
E. J.
,
2011
, “
A New Augmented Lyapunov-Krasovskii Functional Approach to Exponential Passivity for Neural Networks With Time-Varying Delays
,”
Appl. Math. Comput.
,
217
, pp.
10231
10238
.10.1016/j.amc.2011.05.021
5.
Li
,
C.
, and
Li
,
H.
,
2012
, “
Robust Control for a Class of Chaotic and Hyperchaotic Systems Via Linear State Feedback
,”
Phys. Scr.
,
85
, pp.
025007-1
025007-5
.10.1088/0031-8949/85/02/025007
6.
Piper
,
J. R.
,
2010
, “
Simple Autonomous Chaotic Circuits
,”
IEEE Trans. Circuits Syst., II.: Express Briefs
,
57
, pp.
730
734
.10.1109/TCSII.2010.2058493
7.
Chen
,
G. R.
, and
Ueta
,
T.
,
1999
, “
Yet Another Chaotic Attractor
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
9
, pp.
1465
1466
.10.1142/S0218127499001024
8.
,
J. H.
, and
Chen
,
G. R.
,
2002
, “
A New Chaotic Attractor Coined
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
12
, pp.
659
661
.10.1142/S0218127402004620
9.
Liu
,
C. X.
,
Liu
,
T.
,
Liu
,
L.
, and
Liu
,
K.
,
2004
, “
A New Chaotic Attractor
,”
Chaos, Solitons Fractals
,
22
, pp.
1031
1038
.10.1016/j.chaos.2004.02.060
10.
Qi
,
G. Y.
,
Chen
,
G. R.
, and
Wyk
,
M.
,
2008
, “
A Four-Wing Chaotic Attractor Generated from a New 3-D Quadratic Autonomous System
,”
Chaos, Solitons Fractals
,
38
, pp.
705
721
.10.1016/j.chaos.2007.01.029
11.
Rothstein
,
D.
,
Henry
,
E.
, and
Gollub
,
J. P.
,
1999
, “
Persistent Patterns in Transient Chaotic Fluid Mixing
,”
Nature
401
, pp.
770
772
.10.1038/44529
12.
Cuomo
,
K. M.
,
Oppenheim
,
A. V.
, and
Strogatz
,
S. H.
,
1993
, “
Synchronization of Lorenz-Based Chaotic Circuits With Applications to Communications
,”
IEEE Trans. Circuits Syst., II: Analog Digital Signal Process
.
40
, pp.
626
633
.10.1109/82.246163
13.
Li
,
C. L.
,
2012
, “
Tracking Control and Generalized Projective Synchronization of a Class of Hyperchaotic System With Unknown Parameter and Disturbance
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
, pp.
405
413
.10.1016/j.cnsns.2011.05.017
14.
Jing
,
Z. J.
,
Yu
,
C. Y.
, and
Chen
,
G. R.
,
2004
, “
Complex Dynamics in a Permanent-Magnet Synchronous Motor Model
,”
Chaos, Solitons Fractals
,
22
, pp.
831
848
.10.1016/j.chaos.2004.02.054
15.
Podlubny
,
I.
,
Fractional Differential Equations
(
Academic, San Diego
,
1999
).
16.
Butzer
,
P. L.
, and
Westphal
,
U.
,
An Introduction to Fractional Calculus
(
World Scientific
,
Singapore
,
2000
).
17.
R.
Hifer
, R.,
Applications of Fractional Calculus in Physics
(
World Scientific
,
New Jersey
,
2001
).
18.
Ahmed
,
E.
, and
Elgazzar
,
A. S.
,
2007
, “
On Fractional Order Differential Equations Model for Nonlocal Epidemics
,”
Physica A
379
, pp.
607
614
.10.1016/j.physa.2007.01.010
19.
Ama
,
E. S.
,
Aem
,
E. M.
, and
Haa
,
E. S.
,
2007
, “
On the Fractional-Order Logistic Equation
,”
Appl. Math Lett.
,
20
, pp.
817
823
.10.1016/j.aml.2006.08.013
20.
Arena
,
P.
,
Caponetto
,
R.
,
Fortuna
,
L.
, and
Porto
,
D.
,
Nonlinear Noninteger Order Circuits and Systems
(
World Scientific
,
Singapore
,
2000
).
21.
Das
,
S.
,
2008
,
Functional Fractional Calculus for System Identification and Controls
, 1st ed.,
Springer
,
New York
.
22.
Mandelbort
,
B. B.
,
The Fractal Geometry of Nature
(
Freeman
,
New York
,
1983
).
23.
Tang
,
Y.
, and
Fang
,
J. A.
,
2010
, “
Synchronization of N-Coupled Fractional-Order Chaotic Systems With Ring Connection
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
401
412
.10.1016/j.cnsns.2009.03.024
24.
Kiani
,
B. A.
,
Fallahi
,
K.
,
Pariz
,
N.
, and
Leung
,
H.
,
2009
, “
A Chaotic Secure Communication Scheme Using Fractional Chaotic Systems Based on an Extended Fractional Kalman Filter
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
863
879
.10.1016/j.cnsns.2007.11.011
25.
Deng
,
W.
, and
Li
,
C.
,
2005
, “
Chaos Synchronization of the Fractional Lü System
,”
Physica A
353
, pp.
61
72
.10.1016/j.physa.2005.01.021
26.
Song
,
L.
,
Yang
,
J. Y.
, and
Xu
,
S. Y.
,
2010
, “
Chaos Synchronization for a Class of Nonlinear Oscillators With Fractional Order
.
Nonlinear Anal.: Real World Appl.
,
72
, pp.
2326
2336
.
27.
Zhang
,
K.
, Wang, and
Fang
,
H.
,
2012
, “
Feedback Control and Hybrid Projective Synchronization of a Fractional-Order Newton-Leipnik System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
, pp.
317
328
.10.1016/j.cnsns.2011.04.003
28.
Lin
,
T.
, and
Lee
,
T.
,
2011
, “
Chaos Synchronization of Uncertain Fractional-Order Chaotic Systems With Time Delay Based on Adaptive Fuzzy Sliding Mode Control
,”
IEEE Trans. Fuzzy Syst.
,
19
, pp.
623
635
.10.1109/TFUZZ.2011.2127482
29.
Wang
,
S.
,
Yu
,
Y.
, and
Diao
,
M.
,
2010
, “
Hybrid Projective Synchronization of Chaotic Fractional Order Systems With Different Dimensions
,”
Physica A
389
, pp.
4981
4988
.10.1016/j.physa.2010.06.048
30.
Hegazi
,
A. S.
, and
Matouk
,
A. E.
,
2011
, “
Dynamical Behaviors and Synchronization in the Fractional Order Hyperchaotic Chen System
,”
Appl. Math. Lett.
,
24
, pp.
1938
1944
.10.1016/j.aml.2011.05.025
31.
Peng
,
G.
, and
Jiang
,
Y.
,
2008
, “
Generalized Projective Synchronization of a Class of Fractional-Order Chaotic Systems Via a Scalar Transmitted Signal
,”
Phys. Lett. A
372
, pp.
3963
3970
.10.1016/j.physleta.2008.01.061
32.
Matouk
,
A. E.
,
2011
,
Chaos, Feedback Control and Synchronization of a Fractional-Order Modified Autonomous Van der Pol–Duffing
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
, pp.
975
986
.10.1016/j.cnsns.2010.04.027
33.
Caputo
,
M
.,
1967
, “
Linear Models of Dissipation Whose Q is Almost Frequency Independent-II
,”
Geophys. J. R. Astron. Soc.
,
13
, pp.
529
539
.10.1111/j.1365-246X.1967.tb02303.x
34.
Tavazoei
,
M. S.
, and
Haeri
,
M.
,
2008
, “
Chaotic Attractors in Incommensurate Fractional Order Systems
,”
Physica D
237
, pp.
2628
2637
.10.1016/j.physd.2008.03.037
35.
Hu
,
J. B.
,
Han
,
Y.
, and
Zhao
,
L. D.
,
2009
, “
A Novel Stability Theorem for Fractional Systems and its Applying in Synchronizing Fractional Chaotic System Based on Back-Stepping Approach
,”
Acta. Phys. Sin.
,
58
, pp.
2235
2239
.
You do not currently have access to this content.