Accurate modeling of large wind turbine blades is an extremely challenging problem. This is due to their tremendous geometric complexity and the turbulent and unpredictable conditions in which they operate. In this paper, a continuum based three dimensional finite element model of an elastic wind turbine blade is derived using the absolute nodal coordinates formulation (ANCF). This formulation is very suitable for modeling of large-deformation, large-rotation structures like wind turbine blades. An efficient model of six thin plate elements is proposed for such blades with non-uniform, and twisted nature. Furthermore, a mapping procedure to construct the ANCF model of NACA (National Advisory Committee for Aeronautics) wind turbine blades airfoils is established to mesh the geometry of a real turbine blade. The complex shape of such blades is approximated using an absolute nodal coordinate thin plate element, to take the blades tapering and twist into account. Three numerical examples are presented to show the transient response of the wind turbine blades due to gravitational/aerodynamics forces. The simulation results are compared with those obtained using ANSYS code with a good agreement.

References

References
1.
Kalleϕe
,
B. S.
,
2007
, “
Aeroservoelasticity of Wind Turbines
,” Ph.D. thesis, Technical University of Denmark.
2.
Holm-Jϕrgensen
,
K.
, and
Nielsen
,
S.
,
2009
, “
System Reduction in Multibody Dynamics of Wind Turbines
,”
Multibody Syst. Dyn.
,
21
(
2
), pp.
147
165
.10.1007/s11044-008-9132-4
3.
Shabana
A. A.
,
2005
,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University
,
Cambridge, England
.
4.
Nada
,
A. A.
,
Hussein
,
B. A.
,
Megahed
,
S. M.
, and
Shabana
,
A. A.
,
2010
, “
Use of the Floating Frame of Reference Formulation in Large Deformation Analysis: Experimental and Numerical Validation
,”
Proc. Inst. Mech. Eng., Part K: J. Multibody Dyn.
,
224
, pp.
45
58
.10.1243/14644193JMBD208
6.
Dufva
,
K.
, and
Shabana
,
A. A.
,
2005
, “
Analysis of Thin Plate Structure Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K: J. Multibody Dyn.
,
219
, pp.
345
355
. 10.1243/146441905X50678
7.
Dufva
,
K. E.
,
Kerkkänen
,
K. S.
,
Maqueda
,
L.
, and
Shabana
,
A. A.
,
2007
, “
Nonlinear Dynamics of Three-dimensional Belt Drives Using the Finite-Element Method
,”
Nonlinear Dyn.
,
48
(
4
), pp.
449
466
.10.1007/s11071-006-9098-9
8.
Yoo
,
W. S.
,
Lee
,
J. H.
,
Park
,
S. J.
,
Sohn
,
J. H.
,
Pogorelov
,
D.
, and
Dmitrochenko
,
O.
,
2004
, “
Large Deflection Analysis of a Thin Plate: Computer Simulations and Experiments
,”
Multibody Syst. Dyn.
,
11
, pp.
185
208
.10.1023/B:MUBO.0000025415.73019.bb
9.
Vallejo
,
D. G.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2005
, “
Finite Element Analysis of the Geometric Stiffening Effect Using the Absolute Nodal Coordinate Formulation
,” Proceedings of IDETC/CIE, ASME 2005 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Sept. 24–28, Long Beach, California.
10.
Nada
,
A. A.
, and
El-Assal
,
A. M.
,
2012
, “
Absolute Nodal Coordinate Formulation of Large-Deformation Piezoelectric Laminated Plates
,”
Nonlinear Dyn.
,
67
(
4
), pp.
2441
2454
.10.1007/s11071-011-0158-4
11.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
45
, pp.
109
130
.10.1007/s11071-006-1856-1
12.
Shabana
,
A. A.
,
2010
,
Computational Continuum Mechanics
,
Cambridge University
,
Cambridge, England
.
13.
Yakoub
,
Y. R.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
, pp.
614
621
.10.1115/1.1410099
14.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
606
613
.10.1115/1.1410100
15.
Vallejo
,
D. G.
,
Mayo
,
J.
,
Escalona
,
J. L.
, and
Dominguez
,
J.
,
2004
, “
Efficient Evaluation of the Elastic Forces and the Jacobian in the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
35
(
4
), pp.
313
329
.10.1023/B:NODY.0000027747.41604.20
16.
Hussein
,
B. A.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
,
2007
, “
Coupled Deformation Modes in the Finite Element Absolute Nodal Coordinate Formulation
,” 12th IFToMM World Congress, Besançon, France, June 18–21.
17.
Dmitrochenko
,
O. N.
,
Hussein
,
B. A.
, and
Shabana
,
A. A.
,
2009
, “
Coupled Deformation Modes in the Large Deformation Finite Element Analysis: Generalization
,”
J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021002
.10.1115/1.3079682
18.
Hussein
,
B. A.
,
Negrut
,
D.
, and
Shabana
,
A. A.
,
2008
, “
Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations
,”
Nonlinear Dyn.
,
54
(4)
, pp.
283
296
.10.1007/s11071-007-9328-9
19.
Hussein
,
B. A.
, and
Shabana
,
A. A.
,
2011
, “
Sparse Matrix Implicit Numerical Integration of the Stiff Differential/Algebraic Equations: Implementation
,”
Nonlinear Dyn.
,
65
, pp.
369
382
.10.1007/s11071-010-9898-9
20.
Sugiyama
,
H.
,
Escalona
,
J.
, and
Shabana
,
A. A.
,
2003
, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
33
, pp.
167
195
.10.1023/A:1022082826627
21.
Vallejo
,
D. G.
,
Valverde
,
J.
, and
Dominguez
,
J.
,
2005
, “
An Internal Damping Model for the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
42
, pp.
347
369
.10.1007/s11071-005-6445-1
22.
Abdel-Nasser
,
M.
, and
Shabana
,
A.
,
2011
, “
A Nonlinear Visco-elastic Constitutive Model for Large Rotation Finite Element Formulations
,”
Multibody Syst. Dyn.
,
26
(
1
), pp.
57
79
.10.1007/s11044-011-9244-0
23.
Dreese
,
J.
,
2000
,
Aero Basics and Design FOIL User Guide
,
Capitola, California
.
24.
Carmichael
,
R. L.
,
2001
, “
Algorithm for Calculating Coordinates of Cambered NACA Airfoils at Specified Chord Locations
,” AIAA, pp.
5235-1
5235-8
.
25.
Farin
,
G.
,
2001
,
Curves and Surfaces for CAGD A Practical Guide
,
5th ed.
,
Morgan Kaufmann Publishers
, San
Francisco, CA
.
26.
El Chazly
,
N. M.
,
1993
, “
Static and Dynamic Analysis of Wind Turbine Blades Using the Finite Element Method
,”
Renewable Energy
,
3
(
6–7
), pp.
705
724
.10.1016/0960-1481(93)90078-U
27.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice-Hall
,
Engelwood Cliffs, NJ
.
28.
Sereshk
,
M. V.
, and
Salimi
,
M.
,
2011
, “
Comparison of Finite Element Method Based on Nodal Displacement and Absolute Nodal Coordinate Formulation (ANCF) in Thin Shell Analysis
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
8
), pp.
1185
1198
.10.1002/cnm.1348
29.
Sugiyama
,
H.
,
Koyama
,
H.
, and
Yamashita
,
H.
,
2010
, “
Gradient Deficient Curved Beam Element Using the Absolute Nodal Coordinate Formulation
,”
J. Comput. Nonlinear Dyn.
,
5
, p.
021001
.10.1115/1.4000793
30.
Jureczko
,
M.
,
Pawlak
,
M.
, and
Mezyk
,
A.
,
2005
, “
Optimisation of Wind Turbine Blades
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
463
471
.10.1016/j.jmatprotec.2005.06.055
31.
Houghton
,
E. L.
, and
Carpenter
,
P. W.
,
2003
,
Aerodynamics for Engineering Students
,
5th ed.
,
Butterworth-Heinemann
,
London
.
32.
Shabana
,
A. A.
,
2010
,
Computational Dynamics
,
3rd ed.
,
Wiley
,
New York.
33.
ANSYS User's Manual
,
2001
,
12th ed.
,
SAS IP
,
Canonsburg
.
34.
Cheung
,
Y. K.
,
Zhang
,
Y. X.
, and
Wanji
,
C.
,
2000
, “
The Application of a Refined Non-conforming Quadrilateral Plate Bending Element in Thin Plate Vibration and Stability Analysis
,”
Finite Elem. Anal. Design
,
34
(
2
), pp.
175
191
.10.1016/S0168-874X(99)00037-2
35.
Hua
,
X.
,
Rui
,
G. U.
,
Jin
,
J.
,
Liu
,
Y.
,
Yi
,
M. A.
,
Cong
,
Q.
, and
Zheng
,
Y.
,
2010
, “
Numerical Simulation and Aerodynamic Performance Comparison Between Seagull Aerofoil and NACA 4412 Aerofoil Under Low-Reynolds
,”
Adv. Nat. Sci.
,
3
(
2
), pp.
244
250
.
36.
Rajakumar
,
S.
, and
Ravindran
,
D.
,
2010
, “
Computational Fluid Dynamics Of Wind Turbine Blade at Various Angles of Attack and Low Reynolds Number
,”
Int. J. Eng. Sci. Technol.
,
2
(
11
), pp.
6474
6484
.
You do not currently have access to this content.