In the referenced paper, the authors use the undetermined coefficient method to analytically construct homoclinic and heteroclinic orbits in the T system. Unfortunately their method is not valid because they assume odd functions for the first component of the homoclinic and the heteroclinic orbit whereas these Shil'nikov global connections do not exhibit symmetry.
Issue Section:
Errata
References
1.
Van Gorder
, R. A.
, and Choudhury
, S. R.
, 2011
, “Shil’nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System
,” J. Comput. Nonlinear Dyn.
, 6
, p. 021013
.10.1115/1.40026852.
Zhou
, T.
, Chen
, G.
, and Yang
, Q.
, 2004
, “Constructing a New Chaotic System Based on Şi’lnikov Criterion
,” Chaos, Solitons Fractals
, 19
, pp. 985
–993
.10.1016/S0960-0779(03)00251-03.
Zhou
, T.
, Tang
, Y.
, and Chen
, G.
, 2004
, “Chen’s Attractor Exists
, Int. J. Bifurcation Chaos
, 14
, pp. 3167
–3177
.10.1142/S02181274040112964.
Zhou
, T.
, Chen
, G.
, and Çelikovský
, S.
, 2005
, “Şi’lnikov Chaos in the Generalized Lorenz Canonical Form of Dynamical Systems,”
Nonlinear Dyn.
, 39
, pp. 319
–334
.10.1007/s11071-005-4195-85.
Zheng
, Z.
, and Chen
, G.
, 2006
, “Existence of Heteroclinic Orbits of the Shil’nikov Type in a 3D Quadratic Autonomous Chaotic System
,” J. Math. Anal. Appl.
, 315
, pp. 106
–119
.10.1016/j.jmaa.2005.09.0876.
Zhou
, L.
, and Chen
, F.
, 2008
, “Sil’nikov Chaos of the Liu System
,” Chaos
, 18
, p. 013113
.10.1063/1.28399097.
Ren
, H. P.
, and Li
, W. C.
, 2010
, “Heteroclinic Orbits in Chen Circuit With Time Delay
,” Commun. Nonlinear Sci. Numer. Simul.
, 15
, pp. 3058
–3066
.10.1016/j.cnsns.2009.11.0058.
Algaba
, A.
, Fernández-Sánchez
, F.
, Merino
, M.
, and Rodríguez-Luis
, A. J.
, 2012
, “Comment on ‘Existence of Heteroclinic Orbits of the Shil’nikov Type in a 3D Quadratic Autonomous Chaotic System” [J. Math. Anal. Appl., 315 (2006) 106–119]
,” J. Math. Anal. Appl.
, 392, pp. 99–101
.10.1016/j.jmaa.2012.01.0409.
Algaba
, A.
, Fernández-Sánchez
, F.
, Merino
, M.
, and Rodríguez-Luis
, A. J.
, 2011
, “Comment on ‘Sil’nikov Chaos of the Liu System,’ [Chaos, 18, p. 013113 (2008)]
, ” Chaos
, 21
, p. 048101
.10.1063/1.365792110.
Algaba
, A.
, Fernández-Sánchez
, F.
, Merino
, M.
, and Rodríguez-Luis
, A. J.
, 2012
, “Comment on ‘Heteroclinic Orbits in Chen Circuit With Time Delay’ [Commun. Nonlinear Sci. Numer. Simulat. 15 (2010) pp. 3058–3066]
, ” Commun. Nonlinear Sci. Numer. Simul.
, 17
, pp. 2708
–2710
.10.1016/j.cnsns.2011.10.01111.
Tigan
, G.
, and Opris
, D.
, 2008
, “Analysis of a 3D Chaotic System
,” Chaos, Soliton Fractals
, 36
, pp. 1315
–1319
.10.1016/j.chaos.2006.07.05212.
Zhou
, T.
, and Chen
, G.
, 2006
, “Classification of Chaos in 3-D Autonomous Quadratic Systems-I. Basic Framework and Methods
,” Int. J. Bifurcation Chaos
, 16
, pp. 2459
–2479
.10.1142/S021812740601620313.
Wang
, J.
, Zhao
, M.
, Zhang
, Y.
, and Xiong
, X.
, 2007
, “Şilnikov-Type Orbits of Lorenz-Family Systems
,” Physica A
, 375
, pp. 438
–446
.10.1016/j.physa.2006.10.00714.
Jiang
, Y.
, and Sun
, J.
, 2007
, “Si’lnikov Homoclinic Orbits in a New Chaotic System
,” Chaos, Soliton Fractals
, 32
, pp. 150
–159
.10.1016/j.chaos.2005.10.08815.
Sun
, F. Y.
, and Yan
, Y. Q.
, 2007
, “Shil’nikov Heteroclinic Orbits in a Chaotic System
,” Int. J. Pure Appl. Math.
, 36
, pp. 295
–302
.16.
Sun
, F. Y.
, 2007
, “Shil’nikov Heteroclinic Orbits in a Chaotic System
,” Int. J. Mod. Phys. B
, 21
, pp. 4429
–4436
.10.1142/S021797920703778817.
Wang
, X.
, 2009
, “Si’lnikov Chaos and Hopf Bifurcation Analysis of Rucklidge System
,” Chaos, Soliton Fractals
, 42
, pp. 2208
–2217
.10.1016/j.chaos.2009.03.13718.
Wang
, J.
, Chen
, Z.
, and Yuan
, Z.
, 2009
, “Existence of a New Three-Dimensional Chaotic Attractor
,” Chaos, Soliton Fractals
, 42
, pp. 3053
–3057
.10.1016/j.chaos.2009.04.01119.
Wang
, Z.
, 2010
, “Existence of Attractor and Control of a 3D Differential System
,” Nonlinear Dyn.
, 60
, pp. 369
–373
.10.1007/s11071-009-9601-120.
Zhou
, L.
, and Chen
, F.
, 2009
, “Hopf Bifurcation and Si’lnikov Chaos of Genesio System
,” Chaos, Soliton Fractals
, 40
, pp. 1413
–1422
.10.1016/j.chaos.2007.09.03321.
Ding
, Y.
, and Zhang
, Q.
, 2010
, “Impulsive Homoclinic Chaos in Van der Pol Jerk System
,” Trans. Tianjin Univ.
, 16
, pp. 457
–460
.10.1007/s12209-010-1400-8Copyright © 2013 by ASME
You do not currently have access to this content.