This article is concerned with the development of a distributed model based on the modified strain gradient elasticity theory (MSGT), which enables us to investigate the size-dependent pull-in instability of circular microplates subjected to the uniform hydrostatic and nonuniform electrostatic actuations. The model developed herein accommodates models based on the classical theory (CT) and modified couple stress theory (MCST), when all or two material length scale parameters are set equal to zero, respectively. On the basis of Hamilton's principle, the higher-order nonlinear governing equation and corresponding boundary conditions are obtained. In order to linearize the nonlinear equation, a step-by-step linearization scheme is implemented, and then the linear governing equation is discretized along with different boundary conditions using the generalized differential quadrature (GDQ) method. In the case of CT, it is indicated that the presented results are in good agreement with the existing data in the literature. Effects of the length scale parameters, hydrostatic and electrostatic pressures, and various boundary conditions on the pull-in voltage and pull-in hydrostatic pressure of circular microplates are thoroughly investigated. Moreover, the results generated from the MSGT are compared with those predicted by MCST and CT. It is shown that the difference between the results from the MSGT and those of MCST and CT is considerable when the thickness of the circular microplate is on the order of length scale parameter.

References

References
1.
Bao
,
M.
, and
Wang
,
W.
,
1996
, “
Future of Microelectromechanical Systems (MEMS)
,”
Sens. Actuators, A
,
56
, pp.
135
141
.10.1016/0924-4247(96)01274-5
2.
Rezazadeh
,
Gh.
,
Tayefe-Rezaei
,
S.
,
Ghesmati
,
J.
, and
Tahmasebi
,
A.
,
2007
, “
Investigation of the Pull-In Phenomenon in Drug Delivery Micropump Using Galerkin Method
,”
Sens. Transducers J.
,
78
, pp.
1098
1107
. Available at: http://www.sensorsportal.com/HTML/DIGEST/P_134.htm
3.
Saif
,
M. T. A.
,
Alaca
,
B. E.
, and
Sehitoglu
,
H.
,
1998
, “
Analytical Modeling of Electrostatic Membrane Actuator Micro Pumps
,”
IEEE J. Micromech. Syst.
,
8
, pp.
335
344
.10.1109/84.788638
4.
Alasti
,
B. M.
,
Rezazadeh
,
Gh.
,
Borgheei
,
A. M.
,
Minaei
,
S.
, and
Habibifar
,
R.
,
2011
, “
On the Mechanical Behavior of a Functionally Graded Micro-beam Subjected to a Thermal Moment and Nonlinear Electrostatic Pressure
,”
Compos. Struct.
,
93
, pp.
1516
1525
.10.1016/j.compstruct.2010.11.013
5.
Sallese
,
J. M.
,
Grabinski
,
W.
,
Meyer
,
V.
,
Bassin
,
C.
, and
Fazan
,
P.
,
2001
, “
Electrical Modeling of a Pressure Sensor MOSFET
,”
Sens. Actuators
, A,
94
, pp.
53
58
.10.1016/S0924-4247(01)00693-8
6.
Zengerle
,
R.
,
Richter
,
A.
, and
Sandmaier
,
H.
,
1992
, “
A Micro Membrane Pump With Electrostatic Actuation
,”
Proceedings of the Micro Electro Mechanical Systems Conference
, Travemunde, Germany, pp.
19
24
.
7.
Zhang
,
X. M.
,
Chau
,
F. S.
,
Quan
,
C.
,
Lam
,
Y. L.
, and
Liu
,
A. Q.
,
2001
, “
A Study of the Static Characteristics of a Torsional Micro Mirror
,”
Sens. Actuators, A
,
90
, pp.
73
81
.10.1016/S0924-4247(01)00453-8
8.
Hsu
,
P. P. C.
,
Mastrangelo
,
C. H.
, and
Wise
,
K. D.
,
1998
, “
A High Sensitivity Polysilicon Diaphragm Condenser Microphone
,”
Proceedings of the MEMS Conference
, Heidelberg, Germany, pp.
580
585
.
9.
Nathanson
,
H. C.
,
Newell
,
W. E.
,
Wickstrom
,
R. A.
, and
Davis
,
J. R.
,
1967
, “
The Resonant Gate Transistor
,”
IEEE Trans. Electron Devices
,
14
, pp.
117
133
.10.1109/T-ED.1967.15912
10.
Taylor
,
G. I.
,
1963
, “
The Coalescence of Closely Spaced Drops When They Are at Different Electric Potentials
,”
Proc. R. Soc. London, Ser. A
,
306
, pp.
423
434
. Available at: http://www.jstor.org/discover/10.2307/2416073?uid=3739704 &uid=2129&uid=2&uid=70&uid=4&uid= 3739256&sid=21101008240453
11.
Rezazadeh
,
Gh.
, and
Tahmasebi
,
A.
,
2006
, “
Eliminating of the Residual Stresses Effect in the Fixed-Fixed End Type MEM Switches by Piezoelectric Layers
,”
J. Sens. Transducers
,
66
(
4
), pp.
534
542
. Available at: http://www.researchgate.net/publication/228940703_Eliminating_of_the_Residual_Stresses_ Effect_in_the_Fixed-Fixed_End_Type_MEMS_Switches_by_Piezoelectric_Layers
12.
Rezazadeh
,
Gh.
,
Tahmasebi
,
A.
, and
Zubtsov
,
M.
,
2006
, “
Application of Piezoelectric Layers in Electrostatic MEM Actuators, Controlling of Pull-In Voltage
,”
J. Microsyst. Technol.
,
12
(
12
), pp.
1163
1170
.10.1007/s00542-006-0245-5
13.
Sadeghian
,
H.
,
Rezazadeh
,
Gh.
,
Abbaspour
,
E.
,
Tahmasebi
,
A.
, and
Hosainzadeh
,
I.
,
2006
, “
The Effect of Residual Stress on Pull-In Voltage of Fixed-Fixed End Type MEM Switches With Variative Electrostatic Area
,”
Proc. IEEE-NEMS, Zuhai
, pp.
18
21
.
14.
Nabian
,
A.
,
Rezazadeh
,
Gh.
,
Haddad-derafshi
,
M.
, and
Tahmasebi
,
A.
,
2008
, “
Mechanical Behavior of a Circular Microplate Subjected to Uniform Hydrostatic and Non-uniform Electrostatic Pressure
,”
J. Microsyst. Technol.
,
14
, pp.
235
240
.10.1007/s00542-007-0425-y
15.
Soleymani
,
P.
,
Sadeghian
,
H.
,
Tahmasebi
,
A.
, and
Rezazadeh
,
Gh.
,
2006
, “
Pull-in Instability Investigation of Circular Micro Pump Subjected to Nonlinear Electrostatic Force
,”
Sens. Transducers J.
,
69
(
7
), pp.
622
628
. Available at: http://www.sensorsportal.com/HTML/DIGEST/P_74.htm
16.
Talebian
,
S.
,
Yagubizade
,
H.
, and
Rezazadeh
,
Gh.
,
2008
, “
Mechanical Behavior of a Rectangular Micro Plate With Hydrostatic and Electrostatic Pressures Actuation
,”
16th Annual (International) Conference on Mechanical Engineering-ISME
, pp.
14
16
.
17.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity – Theory and Experiment
,”
Acta Metall. Mater.
42
, pp.
475
484
.
10.1016/0956-7151(94)90502-9
18.
Vardoulakis
,
I.
,
Exadaktylos
,
G.
, and
Kourkoulis
,
S. K.
,
1998
, “
Bending of Marble With Intrinsic Length Scales: A Gradient Theory With Surface Energy and Size Effects
,”
J. Phys. IV
,
8
, pp.
399
406
.10.1051/jp4:1998849
19.
Lam
,
D. C. C.
, and
Chong
,
A. C. M.
,
1999
, “
Indentation Model and Strain Gradient Plasticity Law for Glassy Polymers
,”
J. Mater. Res.
,
14
, pp.
3784
3788
.10.1557/JMR.1999.0512
20.
Chasiotis
,
I.
, and
Knauss
,
W. G.
,
2003
, “
The Mechanical Strength of Polysilicon Films: Part 2. Size Effects Associated With Elliptical and Circular Perforations
,”
J. Mech. Phys. Solids
,
51
, pp.
1551
1572
.10.1016/S0022-5096(03)00050-4
21.
Asghari
,
M.
,
Kahrobaiyan
,
M. H.
, and
Ahmadian
,
M. T.
,
2010
, “
A Nonlinear Timoshenko Beam Formulation Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
48
, pp.
1749
1761
.10.1016/j.ijengsci.2010.09.025
22.
Kong
,
S.
,
Zhou
,
S.
,
Nie
,
Z.
, and
Wang
,
K.
,
2008
, “
The Size-Dependent Natural Frequency of Bernoulli–Euler Micro-beams
,”
Int. J. Eng. Sci.
,
46
, pp.
427
437
.10.1016/j.ijengsci.2007.10.002
23.
Ma
,
H. M.
,
Gao
,
X. L.
, and
Reddy
,
J. N.
,
2008
, “
A Microstructure-Dependent Timoshenko Beam Model Based on a Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
, pp.
3379
3391
.10.1016/j.jmps.2008.09.007
24.
Ansari
,
R.
,
Gholami
,
R.
, and
Sahmani
,
S.
,
2011
, “
Free Vibration of Size-Dependent Functionally Graded Microbeams Based on a Strain Gradient Theory
,”
Compos. Struct.
,
94
, pp.
221
228
.10.1016/j.compstruct.2011.06.024
25.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
, pp.
417
438
.10.1016/0020-7683(65)90006-5
26.
Yang
,
F.
,
Chong
,
A. C. M.
, and
Lam
,
D. C. C.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
, pp.
2731
2743
.10.1016/S0020-7683(02)00152-X
27.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
Phenomenological Theory for Strain Gradient Effects in Plasticity
,”
J. Mech. Phys. Solids
,
41
, pp.
1825
1857
.10.1016/0022-5096(93)90072-N
28.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
296
362
.
29.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
2001
, “
A Reformulation of Strain Gradient Plasticity
,”
J. Mech. Phys. Solids
,
49
, pp.
2245
2271
.10.1016/S0022-5096(01)00049-7
30.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
,
2003
, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
, pp.
1477
1508
.10.1016/S0022-5096(03)00053-X
31.
Abdi
,
J.
,
Koochi
,
A.
,
Kazemi
,
A. S.
, and
Abadyan
,
M.
,
2011
, “
Modeling the Effects of Size Dependence and Dispersion Forces on the Pull-In Instability of Electrostatic Cantilever NEMS Using Modified Couple Stress Theory
,”
Smart Mater. Struct.
20
, p.
055011
.
10.1088/0964-1726/20/5/055011
32.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
Size-Dependent Pull-In Instability of Electrostatically Actuated Microbeam-Based MEMS
,”
J. Micromech. Microeng.
,
21
, p.
027001
.
33.
Rahaeifard
,
M.
,
Kahrobaiyan
,
M. H.
,
Ahmadian
,
M. T.
, and
Firoozbakhsh
,
K.
,
2012
, “
Size-Dependent Pull-In Phenomena in Nonlinear Microbridges
,”
Int. J. Mech. Sci.
,
54
(
1
), pp.
306
310
.10.1016/j.ijmecsci.2011.11.011
34.
Tadi Beni
,
Y.
,
Abadyan
,
M. R.
, and
Noghrehabadi
,
A.
,
2011
, “
Investigation of Size Effect on the Pull-in Instability of Beam-type NEMS Under van der Waals Attraction
,”
Procedia Eng.
,
10
, pp.
1718
1723
.10.1016/j.proeng.2011.04.286
35.
Tadi Beni
,
Y.
,
Koochi
,
A.
, and
Abadyan
,
M.
,
2011
, “
Theoretical Study of the Effect of Casimir Force, Elastic Boundary Conditions and Size Dependency on the Pull-In Instability of Beam-Type NEMS
,”
Physica E (Amsterdam)
,
43
, pp.
979
988
.10.1016/j.physe.2010.11.033
36.
Rezazadeh
,
Gh.
,
Alizadeh
,
Y.
, and
Yagubizade
,
H.
,
2007
, “
Effect of Residual Stress on Divergence Instability of Rectangular Microplate Subjected to Nonlinear Electrostatic Pressure
,”
Sens. Transducers J.
,
81
(
7
), pp.
1364
1372
.10.1088/0960-1317/21/2/027001
37.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
,
New York.
38.
Jomehzadeh
,
E.
,
Noori
,
H. R.
, and
Saidi
,
A. R.
,
2011
, “
The Size-Dependent Vibration Analysis of Micro-plates Based on a Modified Couple Stress Theory
,”
Physica E (Amsterdam)
,
43
, pp.
877
883
.10.1016/j.physe.2010.11.005
39.
Bert
,
W. B.
, and
Malik
,
M.
,
1996
, “
Differential Quadrature Method in Computational Mechanics: A Review
,”
Appl. Mech. Rev.
,
49
, pp.
1
28
.10.1115/1.3101882
You do not currently have access to this content.