In this work, Galerkin approximations are developed for a system of first order nonlinear neutral delay differential equations (NDDEs). The NDDEs are converted into an equivalent system of hyperbolic partial differential equations (PDEs) along with the nonlinear boundary constraints. Lagrange multipliers are introduced to enforce the boundary constraints. The explicit expressions for the Lagrange multipliers are derived by exploiting the equivalence of partial derivatives in space and time at a given point on the domain. To illustrate the method, comparisons are made between numerical solution of NDDEs and its Galerkin approximations for different NDDEs.

References

1.
Driver
,
R.
,
1977
,
Ordinary and Delay Differential Equations
,
Springer-Verlag
,
Berlin
.
2.
Bocharov
,
G.
, and
Rihan
,
F.
,
2000
, “
Numerical Modelling in Biosciences Using Delay Differential Equations
,”
J. Comput. Appl. Math.
,
125
(
1–2
), pp.
183
199
.10.1016/S0377-0427(00)00468-4
3.
Balachandran
,
B.
,
Kalmar-Nagy
,
T.
, and
Gilsinn
,
D.
,
2009
,
Delay Differential Equations: Recent Advances and New Directions
,
Springer
,
New York
.
4.
Richard
,
J.
,
2003
, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.10.1016/S0005-1098(03)00167-5
5.
Pfeiffer
,
F.
, and
Glocker
,
C.
,
1996
,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
New York
.
6.
Wen
,
L.
, and
Liu
,
X.
,
2011
, “
Numerical Stability of One-Leg Methods for Neutral Delay Differential Equations
,”
BIT Numer. Math.
,
52
(1)
, pp.
1
19
.
7.
Wang
,
W.
,
Wen
,
L.
, and
Li
,
S.
,
2010
, “
Stability of Linear Multistep Methods for Nonlinear Neutral Delay Differential Equations in Banach Space
,”
J. Comput. Appl. Math.
,
233
(
10
), pp.
2423
2437
.10.1016/j.cam.2009.10.026
8.
Shampine
,
L.
,
2008
, “
Dissipative Approximations to Neutral DDEs
,”
Appl. Math. Comput.
,
203
(
2
), pp.
641
648
.10.1016/j.amc.2008.05.010
9.
Koto
,
T.
,
2004
, “
Method of Lines Approximations of Delay Differential Equations
,”
Comput. Math. Appl.
,
48
(
1–2
), pp.
45
59
.10.1016/j.camwa.2004.01.003
10.
Maset
,
S.
,
2003
, “
Numerical Solution of Retarded Functional Differential Equations as Abstract Cauchy Problems
,”
J. Comput. Appl. Math.
,
161
(
2
), pp.
259
282
.10.1016/j.cam.2003.03.001
11.
Nayfeh
,
A.
, and
Mook
,
D.
,
1995
,
Nonlinear Oscillations
,
Wiley-VCH
,
Berlin
.
12.
Nayfeh
,
A.
,
1981
,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
13.
Govaerts
,
W.
,
2000
,
Numerical Methods for Bifurcations of Dynamical Equilibria
,
SIAM
,
Philadelphia
.
14.
Dhooge
,
A.
,
Govaerts
,
W.
, and
Kuznetsov
,
Y.
,
2003
, “
MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs
,”
ACM Trans. Math. Softw.
,
29
(
2
), pp.
141
164
.10.1145/779359.779362
15.
Wahi
,
P.
, and
Chatterjee
,
A.
,
2005
, “
Galerkin Projections for Delay Differential Equations
,”
J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
80
87
.10.1115/1.1870042
16.
Ghosh
,
D.
,
Saha
,
P.
, and
Roy Chowdhury
,
A.
,
2007
, “
On Synchronization of a Forced Delay Dynamical System via the Galerkin Approximation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
12
(
6
), pp.
928
941
.10.1016/j.cnsns.2005.08.006
17.
de Jesus Kozakevicius
,
A.
, and
Kalmár-Nagy
,
T.
,
2010
, “
Weak Formulation for Delay Equations
,”
9th Brazilian Conference on Dynamics, Control and Their Applications.
18.
Vyasarayani
,
C. P.
,
2012
, “
Galerkin Approximation for Higher Order Delay Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
3
), p.
031004
.10.1115/1.4005931
19.
Khalil
,
H.
, and
Grizzle
,
J.
,
2002
,
Nonlinear Systems
,
Prentice Hall
,
New Jersey
.
20.
Paul
,
C.
,
1994
,
A Test Set of Functional Differential Equations
,
Mathematics Department, University of Manchester
, Numerical Analysis Report No. 243.
You do not currently have access to this content.