Inertial manifolds with delay (IMD) are applied to the numerical analysis for two-dimensional and three-dimensional panel flutter problems in order to demonstrate their high efficiency in continuous dynamic systems or systems with infinite dimensions. First, Von Kármán's large deformation theory and the first-order piston theory are used to model the system, and a set of nonlinear partial differential equations is obtained. Then, the nonlinear Galerkin method based on IMD is introduced to approach the original infinite dimensional dynamic system, and some expressions with time delay are proposed to reveal the interactions between the higher modes and lower modes. As a result, the degrees-of-freedom of the system are reduced, and computing time can be saved remarkably. Finally, the dynamic behaviors of the system are simulated numerically to make a detailed comparison between IMD and the traditional Galerkin method (TGM). Finally, a conclusion can be drawn that IMD could reduce the computation time up to 7–50%, keeping the same accuracy, and thus its high efficiency is proved. Moreover, the method presented can be extended and applied to other dissipative dynamic systems with large degrees-of-freedom.

References

References
1.
Dowell
,
E. H.
,
1975
,
Aeroelasticity of Plates and Shells
,
Noordhoff International Publishinig
,
Leyden, The Netherlands
.
2.
Dowell
,
E. H.
,
2005
,
A Modern Course in Aeroelasticity
,
Kluwer Academic Publishers
,
New York
.
3.
Liu
,
Y.
,
Li
,
K.-L.
,
Zhang
,
J.
,
Wang
,
H.
, and
Liu
,
L.
,
2012
, “
Numerical Bifurcation Analysis of Static Stall of Airfoil and Dynamic Stall Under Unsteady Perturbation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
8
),
pp.
3427
3434
.10.1016/j.cnsns.2011.12.007
4.
Dowell
,
E. H.
,
1970
, “
A Review of the Aeroelastic Stability of Plates and Shells
,”
AIAA J.
,
8
(
1
),
pp.
385
399
.10.2514/3.5680
5.
Gray
,
J. C.
, and
Mei
,
C. H.
,
1993
, “
Large-Amplitude Finite Element Flutter Analysis of Composite Panels in Hypersonic Flow
,”
AIAA J.
,
31
(
6
),
pp.
1090
1099
.10.2514/3.49051
6.
Mei
,
C. H.
,
Abdel-Motagly
,
K.
, and
Chen
,
R.
,
1999
, “
Review of Nonlinear Panel Flutter at Supersonic and Hypersonic Speeds
,”
ASME Appl. Mech. Rev.
,
52
(
10
),
pp.
321
332
.10.1115/1.3098919
7.
Cheng
,
G. F.
, and
Mei
,
C. H.
,
2004
, “
Finite Element Modal Formulation for Hypersonic Panel Flutter Analysis With Thermal Effects
,”
AIAA J.
,
42
(
4
),
pp.
687
695
.10.2514/1.9553
8.
Dowell
,
E. H.
,
1966
, “
Nonlinear Oscillations of a Fluttering Plate I
,”
AIAA J.
,
4
(
7
),
pp.
1267
1275
.10.2514/3.3658
9.
Dowell
,
E. H.
,
1967
, “
Nonlinear Oscillations of a Fluttering Plate II
,”
AIAA J.
,
5
(
10
),
pp.
1856
1862
.10.2514/3.4316
10.
Dowell
,
E. H.
,
1969
, “
Nonlinear Flutter of Curved Plates
,”
AIAA J.
,
7
(
3
),
pp.
424
431
.10.2514/3.5124
11.
Dowell
,
E. H.
,
1970
, “
Nonlinear Flutter of Curved Plates II
,”
AIAA J.
,
8
(
2
),
pp.
259
261
.10.2514/3.5653
12.
Olson
,
M. D.
,
1967
, “
Finite Element Approach to Panel Flutter
,”
AIAA J.
,
5
(
12
),
pp.
226
227
.10.2514/3.4422
13.
Olson
,
M. D.
,
1970
, “
Some Flutter Solutions Using Finite Element
,”
AIAA J.
,
8
(
4
),
pp.
747
752
.10.2514/3.5751
14.
Mei
,
C. H.
, and
Rogers
,
J. L.
,
1976
, “
Application of NASTRAN to Large Deflection Supersonic Flutter of Panels
,”
NASA Paper No. TM-X-3429
,
pp.
67
97
.
15.
Mei
,
C. H.
,
1977
, “
A Finite Element Approach for Nonlinear Panel Flutter
,”
AIAA J.
,
15
(
8
),
pp.
1107
1110
.10.2514/3.60760
16.
Han
,
A. D.
, and
Yang
,
T. Y.
,
1983
, “
Nonlinear Panel Flutter Using High Order Triangular Finite Elements
,”
AIAA J.
,
21
(
10
),
pp.
1453
1461
.10.2514/3.8267
17.
Dixon
,
I. R.
, and
Mei
,
C. H.
,
1993
, “
Finite Element Analysis of Large Amplitude Panel Flutter of Thin Laminates
,”
AIAA J.
,
31
(
4
),
pp.
701
707
.10.2514/3.11606
18.
Guo
,
X. Y.
, and
Mei
,
C. H.
,
2003
, “
Using Aeroelastic Modes for Nonlinear Panel Flutter at Arbitrary Supersonic Yawed Angle
,”
AIAA J.
,
41
(
2
),
pp.
272
279
.10.2514/2.1940
19.
Guo
,
X. Y.
, and
Mei
,
C. H.
,
2006
, “
Application of Aeroelastic Modes on Nonlinear Supersonic Panel Flutter at Elevated Temperatures
,”
Comput. Struct.
,
84
(
24-25
),
pp.
1619
1628
.10.1016/j.compstruc.2006.01.041
20.
Hashimoto
,
A.
, and
Aoyama
,
T.
,
2009
, “
Effects of Turbulent Boundary Layer on Panel Flutter
,”
AIAA J.
,
47
(
12
),
pp.
2785
1791
.10.2514/1.35786
21.
Mublstein
,
L.
,
Gaspers
,
P. A.
, and
Riddle
,
D. W.
,
1968
, “
an Experimental Study of the Influence of the Turbulent Boundary Layer on Panel Flutter
,”
NASA Paper No. TN D-4486
.
22.
Zhang
,
J.-Z.
,
Bouwman
,
V.
,
Campen
,
D. H. V.
,
Weeme
,
J. W. T.
, and
Zhang
,
G. Q.
,
2001
, “
Dynamic Stability of Doubly Curved Orthotropic Shallow Shells Under Impact
,”
AIAA J.
,
39
(
5
),
pp.
956
961
.10.2514/2.1401
23.
Zhang
,
J. Z.
,
Liu
,
Y.
, and
Chen
,
D. M.
,
2005
, “
Error Estimate for the Influence of Model Reduction of Nonlinear Dissipative Autonomous Dynamical System on the Long-Term Behaviors
,”
J. Appl. Math. Mech.
,
26
(
7
),
pp.
938
943
.10.1007/BF02464244
24.
Zhang
,
J. Z.
,
Ren
,
S.
, and
Mei
,
G. H.
,
2011
, “
Model Reduction on Inertial Manifolds for N-S Equations Approached by Multilevel Finite Element Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(
1
),
pp.
195
205
.10.1016/j.cnsns.2010.02.023
25.
Foias
,
C.
, and
Shell
,
G. R.
,
1988
, “
Inertial Manifolds for Nonlinear Evolutionary Equations
,”
J. Differ. Equations
,
73
(
2
),
pp.
309
353
.10.1016/0022-0396(88)90110-6
26.
Foias
,
C.
,
Manley
,
O.
, and
Temam
,
R.
,
1988
, “
Modelling of the Interaction of Small and Large Eddies in Two Dimensional Turbulent Flows
,”
Math Modell. Numer. Anal.
,
22
(
1
),
pp.
93
118
.
27.
Debussche
,
A.
, and
Temam
,
R.
,
1995
, “
Inertial Manifolds With Delay
,”
Appl. Math. Lett.
,
8
(
2
),
pp.
21
24
.10.1016/0893-9659(95)00004-A
28.
Ashley
,
H.
, and
Zartarian
,
G.
,
1956
, “
Piston Theory-A New Aerodynamic Tool for the Aeroelastician
,”
J. Aeronaut. Sci.
,
23
(
12
),
pp.
1109
1118
.
29.
Zhang
,
W.-W.
,
Ye
,
Z.-Y.
,
Zhang
,
C.-A.
,
Liu
,
F.
,
2009
, “
Supersonic Flutter Analysis Based on a Local Piston Theory
,”
AIAA J.
,
47
(
10
),
pp.
2321
2328
.10.2514/1.37750
You do not currently have access to this content.