Wavelet analysis is a recently developed mathematical tool in applied mathematics. A wavelet method for a class of space-time fractional Klein–Gordon equations with constant coefficients is proposed, by combining the Haar wavelet and operational matrix together and efficaciously dispersing the coefficients. The behavior of the solutions and the effects of different values of fractional order α are graphically shown. The fundamental idea of the Haar wavelet method is to convert the fractional Klein–Gordon equations into a group of algebraic equations, which involves a finite number of variables. The examples are given to demonstrate that the method is effective, fast, and flexible; in the meantime, it is found that the difficulties of using the Daubechies wavelets for solving the differential equation, which need to calculate the correlation coefficients, are avoided.

References

References
1.
Oldham
,
K. B.
, and
Spanier
,
J.
,
1974
,
The Fractional Calculus
,
Academic
,
New York
.
2.
Miller
,
K. S.
, and
Ross
,
B.
,
1993
,
An Introduction to the Fractional Integrals and Derivatives—Theory and Application
,
Wiley
,
New York
.
3.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
I. O.
,
1993
,
Fractional Integrals and Derivatives Theory and Applications
,
Gordon and Breach
,
NewYork
.
4.
Hilfer
,
R.
,
2000
,
Application of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
5.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic
,
New York
.
6.
Zaslavsky
,
G. M.
,
2005
,
Hamiltonian Chaos and Fractional Dynamics
,
Oxford University Press
,
New York
.
7.
Kilbas
,
A. A.
,
Srivastava
,
H. H.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier
,
Amsterdam
.
8.
Magin
,
R. L.
,
2006
,
Fractional Calculus in Bioengineering
,
Begell House
,
Connecticut
.
9.
Gorenflo
,
R.
, and
Mainardi
,
F.
,
1997
,
Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics
,
Springer-Verlag
,
New York
.
10.
West
,
B. J.
,
Bologna
,
M.
, and
Grigolini
,
B.
,
2003
,
Physics of Fractal Operators
,
Springer
,
NewYork
.
11.
Zaslavsky
,
G. M.
,
2002
, “
Chaos, Fractional Kinetics, and Anomalous Transport
,”
Phys. Rep.
,
371
, p.
461
.10.1016/S0370-1573(02)00331-9
12.
Muslih
,
S.
, and
Baleanu
,
D.
,
2005
, “
Hamiltonian Formulation of Systems With Linear Velocities Within Rieman–Liouville Fractional Derivatives
,”
J. Math. Anal. Appl.
,
304
, p.
599
.10.1016/j.jmaa.2004.09.043
13.
Baleanu
,
D.
,
Muslih
,
S.
, and
Tas
,
K.
,
2006
, “
Fractional Hamiltonian Analysis of Higher Order Derivatives Systems
,”
J. Math. Phys.
,
47
, pp.
103
503
.10.1063/1.2356797
14.
Baleanu
,
D.
, and
Golmankhaneh
,
A. K.
,
2009
, “
The Dual Action of Rational Multi Time Hamilton Equations
,”
Int. J. Theor. Phys.
,
48
, pp.
25
58
.10.1007/s10773-009-0042-x
15.
Rabei
,
E. M.
,
Tarawneh
,
D. M.
,
Muslih
,
S. I.
, and
Baleanu
,
D.
,
2007
, “
Heisenberg’s Equations of Motion With Fractional Derivatives
,”
J. Vib. Control
,
13
, pp.
12
39
.10.1177/1077546307077469
16.
Gastao Frederico
,
S. F.
, and
Delfim
,
F. M. T.
,
2007
, “
A Formulation of Noether’s Theorem for Fractional Problems of the Calculus of Variations
,”
J. Math. Anal. Appl.
,
334
, p.
834
.10.1016/j.jmaa.2007.01.013
17.
Baleanu
,
D.
,
Golmankhaneh
,
A. K.
, and
Golmankhaneh
,
A. K.
,
2009
, “
Fractional Nambu Mechanics
,”
Int. J. Theor. Phys.
,
48
, pp.
10
44
.10.1007/s10773-008-9774-2
18.
Baleanu
,
D.
, and
Trujillo
,
J. J.
,
2008
, “
On Exact Solutions of a Class of Fractional Euler-Lagrange Equations
,”
Nonlinear Dyn.
,
52
, p.
331
.10.1007/s11071-007-9281-7
19.
Ortigueira
,
M. D.
, and
Tenreiro Machado
,
J. A.
,
2003
, “
Fractional Signal Processing and Applications
,”
Signal Process.
,
83
, pp.
22
85
. 10.1016/s0165-1684(03)00181-6
20.
Ortigueira
,
M. D.
, and
Tenreiro Machado
,
J. A.
,
2006
, “
Fractional Calculus Applications in Signals and Systems
,”
Signal Process.
,
86
, pp.
25
30
.10.1016/j.sigpro.2006.02.001
21.
Tenreiro Machado
,
J. A.
,
2009
, “
Fractional Derivatives: Probability Interpretation and Frequency Response of Rational Approximations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
3492
3497
.10.1016/j.cnsns.2009.02.004
22.
Tenreiro Machado
,
J. A.
,
Jesus
,
I. S.
,
Galhano
,
A.
, and
Cunha
,
J. B.
,
2006
, “
Fractional Order Electromagnetics
,”
Signal Process.
,
86
, pp.
26
37
.10.1016/j.sigpro.2006.02.010
23.
Wu
,
J. L.
,
2009
, “
A Wavelet Operational Method for Solving Fractional Partial Differential Equations Numerically
,
Appl. Math. Comput.
,
214
(
1
), pp.
31
40
.10.1016/j.amc.2009.03.066
24.
Lepik
,
U.
,
2009
, “
Solving Fractional Integral Equations by the Haar Wavelet Method
,”
Appl. Math. Comput.
,
214
(
2
), pp.
468
478
.10.1016/j.amc.2009.04.015
25.
Mujeeb ur Rehman
M.
, and
Khan
,
R. A.
,
2012
, “
A Numerical Method for Solving Boundary Value Problems for Fractional Differential Equations
,”
Appl. Math. Model.
,
36
, pp.
894
907
.10.1016/j.apm.2011.07.045
26.
Ablowitz
,
M. J.
, and
Clarkson
,
P. A.
,
1990
,
Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform
,
Cambridge University Press
,
Cambridge
.
27.
Kaya
,
D.
, and
El-Sayed
,
S. M.
,
2004
, “
A Numerical Solution of the Klein-Gordon Equation and Convergence of the Domain Decomposition Method
,”
Appl.Math. Comput.
,
156
, pp.
341
353
.10.1016/j.amc.2003.07.014
28.
El-Sayed
,
S. M.
,
2003
, “
The Decomposition Method for Studying the Klein-Gordon Equation
,”
Chaos, Solitons Fractals
,
18
, pp.
1025
1030
.10.1016/S0960-0779(02)00647-1
29.
Yusufoglu
,
E.
,
2008
, “
The Variational Iteration Method for Studying the Klein-Gordon Equation
,”
Appl. Math. Lett.
,
21
, pp.
669
674
.10.1016/j.aml.2007.07.023
30.
Wazwaz
,
A. M.
,
2000
, “
A New Algorithm for Calculating Adomain Polynomials for Nonlinear Operators
,”
Appl. Math. Comput.
,
111
, pp.
53
69
.10.1016/S0096-3003(99)00063-6
31.
Hsiao
,
C. H.
,
1997
, “
State Analysis of Linear Time Delayed Systems via Haar Wavelets
,”
Math. Comput. Simul.
,
44
(
5
), pp.
457
470
.10.1016/S0378-4754(97)00075-X
32.
Shi
,
Z.
,
Liu
,
T.
, and
Gao
,
B.
,
2010
, “
Haar Wavelet Method for Solving Wave Equation
,”
IEEE Proceedings of the International Conference on Computer Application and System Modeling (ICCASM 2010)
.
33.
Haq
,
F.-I.
,
Aziz
,
I.
, and
Islam
,
S.
,
2010
, “
A Haar wavelets Based Numerical Method for Eight-Order Boundary Value Problems
,”
Int. J. Math. Comput. Sci.
,
6
, p.
1
.
34.
Li
,
Y.
,
2010
, “
Solving a Nonlinear Fractional Differential Equation Using Chebyshev Wavelets
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
2284
2292
.10.1016/j.cnsns.2009.09.020
35.
Chen
,
J.
,
2007
, “
Analysis of Stability and Convergence of Numerical Approximation for the Riesz Fractional Reaction-Dispersion Equation
,”
J. Xiamen Univ. (Natural Science)
,
46
(
5
), pp.
616
619
.
36.
Baleanu
,
D.
,
Diethelm
,
K.
,
Scalas
,
E.
, and
Trujillo
,
J. J.
,
2012
,
Fractional Calculus Models and Numerical Methods
,
World Scientific
,
New York
.
37.
Li
,
B.
, and
Luo
,
J.
,
2005
,
Wavelet Analysis and its Application
,
Electronic Industrial Publication
,
Beijing
.
38.
Chen
,
C. F.
, and
Hsiao
,
C. H.
,
1997
, “
Haar Wavelet Method for Solving Lumped and Distributed-Parameter Systems
,”
IEEE Proc. Part D
,
144
(
1
), pp.
87
94
.10.1049/ip-cta:19970702
39.
Lepik
,
U.
,
2007
, “
Numerical Solution of Evolution Equations by the Haar Wavelet Method
,”
Appl. Math. Comput.
,
185
, pp.
695
704
.10.1016/j.amc.2006.07.077
40.
Lepik
,
U.
,
2005
, “
Numerical Solution of Differential Equations Using Haar Wavelets
,”
Math. Comput. Simul.
,
68
, pp.
127
143
.10.1016/j.matcom.2004.10.005
41.
Lepik
,
U.
,
2007
, “
Application of the Haar Wavelet Transform to Solving Integral and Differential Equations
,”
Proc. Estonian Acad. Sci. Phys. Math.
,
56
(
1
), pp.
28
46
.
42.
Hsiao
,
C. H.
, and
Wang
,
W. J.
,
2001
, “
Haar Wavelet Approach to Nonlinear Stiff Systems
,”
Proc. Est. Acad. Sci. Phys., Math.
,
57
, pp.
347
353
.10.1016/S0378-4754(01)00275-0
43.
Hariharan
,
G.
,
2010
, “
Solving Finite Length Beam Equation by the Haar Wavelet Method
,”
Int. J. Comput. Appl.
,
9
(
1
), pp.
27
34
.10.5120/1349-1819
44.
Hariharan
,
G.
, and
Kannan
,
K.
,
2010
, “
A Comparative Study of a Haar Wavelet Method and a Restrictive Taylor’s Series Method for Solving Convection-Diffusion Equations
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
11
(
4
), pp.
173
184
.10.1080/15502281003762181
45.
Hariharan
,
G.
, and
Kannan
,
K.
,
2010
, “
Haar Wavelet Method for Solving Some Nonlinear Parabolic Equations
,”
J. Math. Chem.
,
48
(
4
), pp.
1044
1061
.10.1007/s10910-010-9724-0
46.
Hariharan
,
G.
, and
Kannan
,
K.
,
2010
, “
Haar Wavelet Method for the Solving FitzHugh-Nagumo Equation
,”
Int. J. Comput. Math. Sci.
,
2
, p.
2
.
47.
Hariharan
,
G.
,
2010
, “
Haar Wavelet Method for Solving Sine-Gordon and Klein-Gordon Equations
,”
Int. J. Nonlinear Sci.
,
9
(
2
), pp.
1
10
. IJNS.2011.04.15/460
48.
Kilicman
,
A.
, and
Al Zhour
,
Z. A. A.
,
2007
, “
Kronecker Operational Matrices for Fractional Calculations and Some Applications
,”
Appl. Math. Comput.
187
(
1
), pp.
250
265
.10.1016/j.amc.2006.08.122
49.
Golmankhaneh
,
A. K.
,
Golmankhaneh
,
A. K.
, and
Baleanu
,
D.
,
2011
, “
On Nonlinear Fractional Klein-Gordon Equation
,”
Signal Process.
,
91
, pp.
446
451
.10.1016/j.sigpro.2010.04.016
You do not currently have access to this content.