Safety and robustness will become critical issues when humanoid robots start sharing human environments in the future. In physically interactive human environments, a catastrophic fall is a major threat to the safety and smooth operation of humanoid robots. It is, therefore, imperative that humanoid robots be equipped with a comprehensive fall management strategy. This paper deals with the problem of reducing the impact damage to a robot associated with a fall. A common approach is to employ damage-resistant design and apply impact-absorbing material to robot limbs, such as the backpack and knee, that are particularly prone to fall related impacts. In this paper, we select the backpack to be the most preferred body segment to experience an impact. We proceed to propose a control strategy that attempts to reorient the robot during the fall such that it impacts the ground with its backpack. We show that the robot can fall on the backpack even when it starts falling sideways. This is achieved by generating and redistributing angular momentum among the robot limbs through dynamic coupling. The planning and control algorithms for a fall are demonstrated in simulation.

References

1.
Pratt
,
J.
,
Carff
,
J.
,
Drakunov
,
S.
, and
Goswami
,
A.
,
2006
, “
Capture Point: A Step Toward Humanoid Push Recovery
,”
Proceedings of the Humanoids 2006 Conference
,
Genoa, Italy
,
Dec.
2–4
.
2.
Yun
,
S.-K.
,
Goswami
,
A.
, and
Sakagami
,
Y.
,
2009
, “
Safe Fall: Humanoid Robot Fall Direction Change Through Intelligent Stepping and Inertia Shaping
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
pp.
781
787
.
3.
Nagarajan
,
U.
, and
Goswami
,
A.
,
2010
, “
Generalized Direction Changing Fall Control of Humanoid Robots Among Multiple Objects
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
pp.
3316
3322
.
4.
Fujiwara
,
K.
,
Kanehiro
,
F.
,
Kajita
,
S.
,
Kaneko
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2002
, “
UKEMI: Falling Motion Control to Minimize Damage to Biped Humanoid Robot
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
pp.
2521
2526
.
5.
Fujiwara
,
K. F. K.
,
Kajita
,
S.
,
Yokoi
,
K.
,
Saito
,
H.
,
Harada
,
K.
,
Kaneko
,
K.
, and
Hirukawa
,
H.
,
2003
, “
The First Human-Size Humanoid That can Fall Over Safely and Stand-Up Again
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
pp.
1920
1926
.
6.
Fujiwara
,
K.
,
Kanehiro
,
F.
,
Kajita
,
S.
, and
Hirukawa
,
H.
,
2004
, “
Safe Knee Landing of a Human-Size Humanoid Robot While Falling Forward
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Sendai, Japan
,
pp.
503
508
.
7.
Fujiwara
,
K. F. K.
,
Saito
,
H.
,
Kajita
,
S.
,
Harada
,
K.
, and
Hirukawa
,
H.
,
2004
, “
Falling Motion Control of a Humanoid Robot Trained by Virtual Supplementary Tests
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
New Orleans, LA
,
pp.
1077
1082
.
8.
Fujiwara
,
K.
,
Kajita
,
S.
,
Harada
,
K.
,
Kaneko
,
K.
,
Morisawa
,
M.
,
Kanehiro
,
F.
,
Nakaoka
,
S.
,
Harada
,
S.
, and
Hirukawa
,
H.
,
2006
, “
Towards an Optimal Falling Motion for a Humanoid Robot
,”
Proceedings of the Humanoids 2006 Conference
,
Genoa, Italy
,
pp.
524
529
.
9.
Fujiwara
,
K.
,
Kajita
,
S.
,
Harada
,
K.
,
Kaneko
,
K.
,
Morisawa
,
M.
,
Kanehiro
,
F.
,
Nakaoka
,
S.
,
Harada
,
S.
, and
Hirukawa
,
H.
,
2007
, “
An Optimal Planning of Falling Motions of a Humanoid Robot
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
pp.
456
462
.
10.
Ishida
,
T.
,
Kuroki
,
Y.
, and
Takahashi
,
T.
,
2004
, “
Analysis of Motions of a Small Biped Entertainment Robot
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
pp.
142
147
.
11.
Ogata
,
K.
,
Terada
,
K.
, and
Kuniyoshi
,
Y.
,
2007
, “
Falling Motion Control for Humanoid Robots While Walking
,”
Proceedings of the Humanoids 2007 Conference
,
Pittsburgh, PA
.
12.
Ogata
,
K.
,
Terada
,
K.
, and
Kuniyoshi
,
Y.
,
2008
, “
Real-Time Selection and Generation of Fall Damagae Reduction Actions for Humanoid Robots
,”
Proceedings of the Humanoids
2008
,
Daejeon, Korea
,
pp.
233
238
.
13.
del Solar
,
J. R.
,
Palma-Amestoy
,
R.
,
Marchant
,
R.
,
Parra-Tsunekawa
,
I.
, and
Zegers
,
P.
,
2009
, “
Learning to Fall: Designing Low Damage Fall Sequences for Humanoid Soccer Robots
,”
Rob. Auton. Syst.
,
57
(
8
),
pp.
796
807
.10.1016/j.robot.2009.03.011
14.
Forner Cordero
,
A.
,
2003
, “
Human Gait, Stumble and . . . Fall?
,”
Ph.D. thesis
,
University of Twente
,
Enschede, The Netherlands
.
15.
Robinovitch
,
S. R.
,
Hsiao
,
E. T.
,
Sandler
,
R.
,
Cortez
,
J.
,
Liu
,
Q.
, and
Paiment
,
G. D.
,
2000
, “
Prevention of Falls and Fall-Related Fractures Through Biomechanics
,”
Exercise Sport Sci. Rev.
,
28
(
2
),
pp.
74
79
.
16.
Robinovitch
,
S. N.
,
Brumer
,
R.
, and
Maurer
,
J.
,
2004
, “
Effect of the ‘Squat Protective Response’ on Impact Velocity During Backward Falls
,”
J. Biomech.
,
37
(
9
),
pp.
1329
1337
.10.1016/j.jbiomech.2003.12.015
17.
Li
,
Y.
,
Wang
,
W.
,
Crompton
,
R.
, and
Gunther
,
M.
,
2001
, “
Free Vertical Moments and Transverse Forces in Human Walking and Their Role in Relation to Arm-Swing
,”
J. Exp. Biol.
,
204
,
pp.
47
58
.
18.
Orin
,
D.
, and
Goswami
,
A.
,
2008
, “
Centroidal Momentum Matrix of a Humanoid Robot: Structure and Properties
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Nice, France
.
19.
Featherstone
,
R.
,
1987
,
Robot Dynamics Algorithms
,
Kluwer Academic Publishers
,
Berlin
.
You do not currently have access to this content.