In the present paper, a three-dimensional shear deformable beam finite element is presented, which is based on the absolute nodal coordinate formulation (ANCF). The orientation of the beam’s cross section is parameterized by means of slope vectors. Both a structural mechanics based formulation of the elastic forces based on Reissner’s nonlinear rod theory, as well as a continuum mechanics based formulation for a St. Venant Kirchhoff material are presented in this paper. The performance of the proposed finite beam element is investigated by the analysis of several static and linearized dynamic problems. A comparison to results provided in the literature, to analytical solutions, and to the solution found by commercial finite element software shows high accuracy and high order of convergence, and therefore the present element has high potential for geometrically nonlinear problems.

References

References
1.
Shabana
,
A. A.
,
1997
, “
Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
1
(
3
), pp.
339
348
.10.1023/A:1009740800463
2.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
New York
.
3.
Ibrahimbegović
,
A.
,
1995
, “
On Finite Element Implementation of Geometrically Nonlinear Reissner’s Beam Theory: Three-Dimensional Curved Beam Elements
,”
Comput. Methods Appl. Mech. Eng.
,
122
, pp.
11
26
.10.1016/0045-7825(95)00724-F
4.
Romero
,
I.
,
2008
, “
A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations
,”
Multibody Syst. Dyn.
,
20
, pp.
51
68
.10.1007/s11044-008-9105-7
5.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem. Part I
,”
Comput. Methods Appl. Mech. Eng.
,
49
, pp.
55
70
.10.1016/0045-7825(85)90050-7
6.
Yakoub
,
R. Y.
, and
Shabana
,
A. A.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications
,”
ASME J. Mech. Des.
,
123
, pp.
614
621
.10.1115/1.1410099
7.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
,
2001
, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
,
123
, pp.
606
613
.10.1115/1.1410100
8.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2003
, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
34
, pp.
53
74
.10.1023/B:NODY.0000014552.68786.bc
9.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2007
, “
A Curved Beam Element in the Analysis of Flexible Multi-Body Systems using the Absolute Nodal Coordinates
,”
Proc. IMechE, Part K: J. Multibody Dyn.
,
221
, pp.
219
231
. 10.1243/1464419JMBD86
10.
Gerstmayr
,
J.
,
Matikainen
,
M. K.
, and
Mikkola
,
A. M.
,
2008
, “
A Geometrically Exact Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Multibody Syst. Dyn.
,
20
, pp.
359
384
.10.1007/s11044-008-9125-3
11.
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2009
, “
A Continuum Mechanics Based Derivation of Reissner’s Large-Displacement Finite Strain Beam Theory: The Case of Plane Deformations of Originally Straight Bernoulli-Euler Beams
,”
Acta Mech.
,
206
, pp.
1
21
.10.1007/s00707-008-0085-8
12.
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2009
, “
A Hyperelastic Reissner-Type Model for Non-Linear Shear Deformable Beams
,”
Proceedings of the Mathmod 09
,
I.
Troch
and
F.
Breitenecker
, eds.
13.
Sugiyama
,
H.
,
Gerstmayr
,
J.
, and
Shabana
,
A. A.
,
2006
, “
Deformation Modes in the Finite Element Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
,
298
, pp.
1129
1149
.10.1016/j.jsv.2006.06.037
14.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
, pp.
79
116
.10.1016/0045-7825(86)90079-4
15.
Dmitrochenko
,
O.
,
2005
, “
A New Finite Element of Thin Spatial Beam in Absolute Nodal Coordinate Formulation
,”
Proceedings of the Multibody Dynamics, ECCOMAS Thematic Conference
,
Madrid, Spain
.
16.
Gams
,
M.
,
Planinc
,
I.
, and
Saje
,
M.
,
2007
, “
The Strain-Based Beam Finite Elements in Multibody Dynamics
,”
J. Sound Vib.
,
305
, pp.
194
210
.10.1016/j.jsv.2007.03.055
17.
Zupan
,
D.
, and
Saje
,
M.
,
2003
, “
Finite-Element Formulation of Geometrically Exact Three-Dimensional Beam Theories Based on Interpolation of Strain Measures
,”
Comput. Methods Appl. Mech. Eng.
,
192
, pp.
5209
5248
.10.1016/j.cma.2003.07.008
18.
Gerstmayr
,
J.
, and
Matikainen
,
M. K.
,
2006
, “
Analysis of Stress and Strain in the Absolute Nodal Coordinate Formulation
,”
Mech. Based Des. Struct. Mach.
,
34
, pp.
409
430
.10.1080/15397730601044895
19.
Nachbagauer
,
K.
,
Pechstein
,
A. S.
,
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2011
, “
A New Locking-Free Formulation for Planar, Shear Deformable, Linear and Quadratic Beam Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
26
, pp.
245
263
.10.1007/s11044-011-9249-8
20.
Nachbagauer
,
K.
,
Gruber
,
P.
,
Pechstein
,
A. S.
, and
Gerstmayr
,
J.
,
2011
, “
A 3D Shear Deformable Finite Element Based on the Absolute Nodal Coordinate Formulation
,”
Proceedings of Multibody Dynamics 2011 ECCOMAS Thematic Conference
,
Brussels, Belgium
.
21.
Kerkkänen
,
K. S.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
,
2005
, “
A Linear Beam Finite Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Mech. Des.
,
127
, pp.
621
630
.10.1115/1.1897406
22.
García-Vallejo
,
D.
,
Mikkola
,
A. M.
, and
Escalona
,
J. L.
,
2007
, “
A New Locking-Free Shear Deformable Finite Element Based on Absolute Nodal Coordinates
,”
J. Nonlinear Dyn.
,
50
, pp.
249
264
.10.1007/s11071-006-9155-4
23.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method Fifth Edition Volume 1: The Basis
,
Butterworth-Heinemann
,
Oxford, UK
.
24.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
25.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1951
,
Theory of Elasticity
,
McGraw-Hill Book Company Inc.
,
New York
.
26.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams under Large Overall Motions - The Plane Case: Part I and II
,”
J. Appl. Math.
,
53
, pp.
849
863
. 10.1115/1.3171870
27.
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2008
, “
On the Correct Representation of Bending and Axial Deformation in the Absolute Nodal Coordinate Formulation with an Elastic Line Approach
,”
J. Sound Vib.
,
318
, pp.
461
487
.10.1016/j.jsv.2008.04.019
28.
Gruttmann
,
F.
, and
Wagner
,
W.
,
2001
, “
Shear Correction Factors in Timoshenko’s Beam Theory for Arbitrary Shaped Cross-Sections
,”
J. Comput. Mech.
,
27
, pp.
199
207
.10.1007/s004660100239
You do not currently have access to this content.