In this article, a new technique is introduced for establishing analytical approximate solutions to conservative oscillators with strong odd nonlinearity using the variational iteration method and the Fourier series. The illustrated examples show that only a few iterations can provide very accurate approximate solutions for the whole range of oscillation amplitude even for longer time ranges.

References

1.
Nayfeh
,
A. H.
,
1973
, Perturbation Methods,
Wiley-Interscience
,
New York
.
2.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
John Wiley & Sons, Inc., Wiley Classics Library Edition Published 1995
.
3.
He
,
J. H.
,
1998
, “
Approximate Analytical Solution for Seepage Flow With Fractional Derivatives in Porous Media
,”
Comput. Methods Appl. Mech. Eng.
,
167
, pp.
57
68
.10.1016/S0045-7825(98)00108-X
4.
He
,
J. H.
,
1999
, “
Variational Iteration Method - A Kind of Non-Linear Analytical Technique: Some Examples
,”
Int. J. Nonlinear Mech.
,
34
, pp.
699
708
.10.1016/S0020-7462(98)00048-1
5.
He
,
J. H.
, and
Wu
,
X.
,
2007
, “
Variational Iteration Method: New Development and Applications
,”
Comput. Math. Appl.
,
54
, pp.
881
894
.10.1016/j.camwa.2006.12.083
6.
He
,
J. H.
,
2006
, “
Some Asymptotic Methods for Strongly Nonlinear Equations
,”
Int. J. Mod. Phys. B
,
20
, pp.
1141
1199
.10.1142/S0217979206033796
7.
He
,
J. H.
,
2007
, “
Variational Iteration Method-Some Recent Results and New Interpretations
,”
J. Comput. Appl. Math.
,
207
, pp.
3
17
.10.1016/j.cam.2006.07.009
8.
He
,
J. H.
,
1999
, “
Homotopy Perturbation Technique
,”
Comput. Methods Appl. Mech. Eng.
,
178
, pp.
257
262
.10.1016/S0045-7825(99)00018-3
9.
He
,
J. H.
,
2000
, “
A New Perturbation Technique Which is also Valid for Large Parameters
,”
J. Sound Vib.
,
229
, pp.
1257
1263
.10.1006/jsvi.1999.2509
10.
Liao
,
S. J.
,
2003
,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
CRC Press, Boca Raton, Chapman & Hall
.
11.
Liao
,
S. J.
,
2004
, “
On the Homotopy Analysis Method for Nonlinear Problems
,”
Appl. Math. Comput.
,
147
, pp.
499
513
.10.1016/S0096-3003(02)00790-7
12.
He
,
J. H.
,
2002
, “
Preliminary Report on the Energy Balance for Nonlinear Oscillations
,”
Mech. Res. Commun.
,
29
, pp.
107
111
.10.1016/S0093-6413(02)00237-9
13.
Marinca
,
V.
, and
Herisanu
,
N.
,
2008
, “
Periodic Solutions of Duffing Equation With Strong Non-Linearity
,”
Chaos, Solitons Fractals
,
37
, pp.
144
149
.10.1016/j.chaos.2006.08.033
14.
Chen
,
Y. M.
,
Meng
,
G.
, and
Liu
,
J. K.
,
2010
, “
Variational Iteration Method for Conservative Oscillators With Complicated Nonlinearities
,”
Appl. Math. Comput.
,
15
, pp.
802
809
. Available at: http://www.mcajournal.org/index.php?option=com_content&view=article&id=97&Itemid=190.
15.
Wu
,
B. S.
,
Sun
,
W. P.
, and
Lim
,
C. W.
,
2006
, “
An Analytical Approximate Technique for a Class of Strongly Non-Linear Oscillators
,”
Int. J. Non-Linear Mech.
,
41
, pp.
766
774
.10.1016/j.ijnonlinmec.2006.01.006
16.
Xu
,
L.
,
2007
, “
Application of He’s Parameter-Expansion Method to an Oscillation of a Mass Attached to a Stretched Elastic Wire
,”
Phys. Lett. A
,
368
, pp.
259
262
.10.1016/j.physleta.2007.04.004
17.
Mickens
,
R. E.
,
2001
, “
Mathematical and Numerical Study of Duffing-Harmonic Oscillator
,”
J. Sound Vib.
,
244
, pp.
563
567
.10.1006/jsvi.2000.3502
18.
Lim
,
C. W.
, and
Wu
,
B. S.
,
2003
, “
A New Analytical Approach to the Duffing-Harmonic Oscillator
,”
Phys. Lett. A
,
311
, pp.
365
373
.10.1016/S0375-9601(03)00513-9
19.
Tiwari
,
S. B.
,
Rao
,
B. N.
,
Swamy
,
N. S.
,
Sai
,
K. S.
, and
Nataraja
,
H. R.
,
2005
, “
Analytical Study on a Duffing-Harmonic Oscillator
,”
J. Sound Vib.
,
285
, pp.
1217
1222
.10.1016/j.jsv.2004.11.001
20.
Ozis
,
T.
, and
Yıldırım
,
A.
,
2007
, “
Determination of the Frequency-Amplitude Relation for a Duffing-Harmonic Oscillator by the Energy Balance Method
,”
Comput. Math. Appl.
,
54
, pp.
1184
1187
.10.1016/j.camwa.2006.12.064
21.
Fesanghary
,
M.
,
Pirbodaghi
,
T.
,
Asghari
,
M.
, and
Sojoudi
,
H.
,
2009
, “
A New Analytical Approximation to the Duffing-Harmonic Oscillator
,”
Chaos, Solitons Fractals
,
42
, pp.
571
576
.10.1016/j.chaos.2009.01.024
You do not currently have access to this content.