A standard technique to reduce the system size of flexible multibody systems is the component mode synthesis. Selected mode shapes are used to approximate the flexible deformation of each single body numerically. Conventionally, the (small) flexible deformation is added relatively to a body-local reference frame which results in the floating frame of reference formulation (FFRF). The coupling between large rigid body motion and small relative deformation is nonlinear, which leads to computationally expensive nonconstant mass matrices and quadratic velocity vectors. In the present work, the total (absolute) displacements are directly approximated by means of global (inertial) mode shapes, without a splitting into rigid body motion and superimposed flexible deformation. As the main advantage of the proposed method, the mass matrix is constant, the quadratic velocity vector vanishes, and the stiffness matrix is a co-rotated constant matrix. Numerical experiments show the equivalence of the proposed method to the FFRF approach.

References

References
1.
Hurty
,
W. C.
,
1965
, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
,
3
(
4
), pp.
678
685
.10.2514/3.2947
2.
Craig
,
R. R.
, Jr.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
3.
Lehner
,
M.
, and
Eberhard
,
P.
,
2007
, “
A Two-Step Approach for Model Reduction in Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
,
17
(
2–3
), pp.
157
176
.10.1007/s11044-007-9039-5
4.
Fehr
,
J.
, and
Eberhard
,
P.
,
2010
, “
Error-Controlled Model Reduction in Flexible Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
3
), p.
031005
.10.1115/1.4001372
5.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
,
3rd ed.
,
Cambridge University Press
,
New York
.
6.
Zienkiewicz
,
O. Z.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method. Volume 1: The Basis
,
5th ed.
,
Butterworth-Heinemann
,
Oxford, UK
.
7.
Gerstmayr
,
J.
, and
Schoeberl
,
J.
,
2006
, “
A 3D Finite Element Method for Flexible Multibody Systems
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
309
324
.10.1007/s11044-006-9009-3
8.
Wempner
,
G. A.
,
1969
, “
Finite Elements, Finite Rotations and Small Strains of Flexible Shells
,”
Int. J. Solids Struct.
,
5
, pp.
117
153
.10.1016/0020-7683(69)90025-0
9.
Belytschko
,
T.
, and
Hsieh
,
B. J.
,
1973
, “
Non-Linear Transient Finite Element Analysis With Convected Coordinates
,”
Int. J. Numer. Eng.
,
7
, pp.
255
271
.10.1002/nme.1620070304
10.
Gerstmayr
,
J.
,
2003
, “
Strain Tensors in the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation
,”
Int. J. Nonlinear Dyn.
,
34
, pp.
133
145
.10.1023/B:NODY.0000014556.40215.95
11.
Gerstmayr
,
J.
, and
Ambrósio
,
J. A. C.
,
2008
, “
Component Mode Synthesis With Constant Mass and Stiffness Matrices Applied to Flexible Multibody Systems
,”
Int. J. Numer. Eng.
,
73
, pp.
1518
1546
.10.1002/nme.2133
12.
de Jalón
,
J. G.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge
,
Springer-Verlag
,
New York
.
13.
Gerstmayr
,
J.
, and
Pechstein
,
A.
,
2011
, “
A Generalized Component Mode Synthesis Approach for Multibody System Dynamics Leading to Constant Mass and stiffness Matrices
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2011
.
14.
Pechstein
,
A.
,
Reischl
,
D.
, and
Gerstmayr
,
J.
,
2011
, “
A Generalized Component Mode Synthesis Approach Leading to Constant Mass and Stiffness Matrices
,”
Proceedings of the Multibody Dynamics 2011, ECCOMAS Thematic Conference
.
15.
Humer
,
A.
,
Reischl
,
D.
, and
Gerstmayr
,
J.
,
2012
, “
Investigations on the Application of Energy-Momentum Schemes to Modally-Reduced Multibody Systems
,”
Proceedings of the 2nd Joint International Conference on Multibody System Dynamics
.
16.
Nikravesh
,
P. E.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
17.
Gerstmayr
,
J.
,
2007
, “
Nonlinear Constraints in the Absolute Coordinate Formulation
,”
Acta Mech.
,
192
(
1
), pp.
191
211
.10.1007/s00707-006-0426-4
18.
Betsch
,
P.
,
2005
, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part I: Holonomic Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
50–52
), pp.
5159
5190
.10.1016/j.cma.2005.01.004
19.
Eberhard
,
P.
,
Fehr
,
J.
, and
Mathuni
,
S.
,
2009
, “
Influence of Model Reduction Techniques on the Impact Force Calculation of Two Flexible Bodies
,”
PAMM, Proc. Appl. Math. Mech.
,
9
, pp.
111
112
.10.1002/pamm.200910030
20.
Pechstein
,
A.
,
Reischl
,
D.
, and
Gerstmayr
,
J.
,
2011
, “
The Applicability of the Floating-Frame Based Component Mode Synthesis to High-Speed Rotors
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2011
.
You do not currently have access to this content.