We get symbolic and numeric solutions developing a MAPLE® program which uses the initial velocity on the state variable of a wave equation as control function. Solution of this problem implies the minimization at the final time of the distance measured in a suitable norm between the solution of the problem and a given target. An iterative algorithm is constructed to compute the required optimal control as the limit of a suitable subsequence of controls. Results are tested with some numerical examples.
Issue Section:
Research Papers
References
1.
Gugat
, M.
, 2008
, “Optimal Switching Boundary Control of a String to Rest in Finite Time
,” Z. Angew. Math. Mech.
, 88
(4
), pp. 283
–305
.10.1002/zamm.2007001542.
Hasanov
, A.
, 2009
, “Simultaneous Determination of the Source Terms in a Linear Hyperbolic Problem From the Final Overdetermination: Weak Solution Approach
,” IMA J. Appl. Math.
, 74
, pp. 1
–19
.10.1093/imamat/hxn0423.
Mordukhovich
, B. S.
, and Raymond
, J. P.
, 2004
, “Dirichlet Boundary Control of Hyperbolic Equations in the Presence of State Constraints
,” Appl. Math. Optim.
, 49
, pp. 145
–157
.10.1007/s00245-003-0783-54.
Yamamoto
, M.
, 1995
, “Stability, Reconstruction Formula and Regularization for an Inverse Source Hyperbolic Problem by a Control Method
,” Inverse Probl.
, 11
, pp. 481
–496
.10.1088/0266-5611/11/2/0135.
Zhang
, X.
, Zheng
, C.
, and Zuazua
, E.
, 2009
, “Time Discrete Wave Equations: Boundary Observability and Control
,” Discrete Contin. Dyn. Syst.
, 23
(1&2
), pp. 571
–604
.10.3934/dcds.2009.23.5716.
Lions
, J. L.
, 1971
, Optimal Control of Systems Governed by Partial Differential Equations
, Springer-Verlag
, New York
.7.
Kowalewski
, A.
, 2011
, “Optimal Control via Initial State of an Infinite Order Time Delay Hyperbolic System
,” Proceedings of the 18th International Conference on Process Control
, 14–17 June
, Tatranska Lomnica, Slovakia
.8.
Subaşı
, M.
, and Saraç
, Y.
, 2012
, “A Minimizer for Optimizing the Initial Velocity in a Wave Equation
,” Optimization
, 61
(3
), pp. 327
–333
.10.1080/02331934.2010.5116739.
Zuazua
, E.
, 2004
, “Optimal and Approximate Control of Finite-difference Approximation Schemes for the 1-D Wave Equation
,” Rendiconti Mat., Ser. VIII, Tomo II
, 24
, pp. 201
–237
.10.
Yang
, S. D.
, 2006
, “Shooting Methods for Numerical Solutions of Exact Controllability Problems Constrained by Linear and Semilinear Wave Equations with Local Distributed Controls
,” Appl. Math. Comput.
, 177
, pp. 128
–148
.10.1016/j.amc.2005.10.04211.
Lin
, C. H.
, Bruch
, Jr.
, J.
C.
, Sloss
, J. M.
, Adali
, S.
, and Sadek
, I. S.
, 2009
, “Optimal Multi-interval Control of a Cantilever Beam by a Recursive Control Algorithm
,” Opt. Control Appl. Methods
, 30
, pp. 399
–414
.10.1002/oca.86212.
Gerdts
, M.
, Greif
, G.
, and Pesch
, H. J.
, 2008
, “Numerical Optimal Control of the Wave Equation: Optimal Boundary Control of a String to Rest in Finite Time
,” Math. Comput. Simul.
, 79
, pp. 1020
–1032
.10.1016/j.matcom.2008.02.01413.
Ladyzhenskaya
, O. A.
, 1985
, Boundary Value Problems in Mathematical Physics
, Springer
, New York
.14.
Subaşı
, M.
, 2002
, “An Optimal Control Problem Governed by the Potential of a Linear Schrödinger Equation
,” Appl. Math. Comput.
, 131–1
, pp. 95
–106
.10.1016/S0096-3003(01)00161-815.
Subaşı
, M.
, 2004
, “A Variational Method of Optimal Control Problems for Nonlinear Schrödinger Equation
,” Numer. Methods Partial Differ. Equ.
, 20
(1
), pp. 82
–89
.10.1002/num.10081Copyright © 2013 by ASME
You do not currently have access to this content.