An axisymmetric biphasic finite element model is proposed to simulate the backflow that develops around the external boundary of the catheter during flow-controlled infusions. The model includes both material and geometric nonlinearities and special treatments for the nonlinear boundary conditions used to represent the forward flow from the catheter tip and the axial backflow that occurs in the annular gap that develops as the porous medium detaches from the catheter. Specifically, a layer of elements with high hydraulic conductivity and low Young’s modulus was used to represent the nonlinear boundary condition for the forward flow, and another layer of elements with axial hydraulic conductivity consistent with Poiseuille flow was used to represent the backflow. Validation of the model was performed by modifying the elastic properties of the latter layer to fit published experimental values for the backflow length and maximum fluid pressure obtained during infusions into agarose gels undertaken with a 0.98-mm-radius catheter. Next, the finite element model predictions showed good agreement with independent experimental data obtained for 0.5-mm-radius and 0.33-mm-radius catheters. Compared to analytical models developed by others, this finite element model predicts a smaller backflow length, a larger fluid pressure, and a substantially larger percentage of forward flow. This latter difference can be explained by the important axial flow in the tissue that is not considered in the analytical models. These results may provide valuable guidelines to optimize protocols during future clinical studies. The model can be extended to describe infusions in brain tissue and in patient-specific geometries.

References

1.
Bobo
,
R. H.
,
Laske
,
D. W.
,
Akbasak
,
A.
,
Morrison
,
P. F.
,
Dedrick
,
R. L.
, and
Oldfield
,
O. H.
,
1994
, “
Convection-Enhanced Delivery of Macromolecules in the Brain
,”
Proc. Natl. Acad. Sci. U.S.A.
,
91
, pp.
2076
2080
.10.1073/pnas.91.6.2076
2.
Morrison
,
P. F.
,
Laske
,
D. W.
,
Bobo
,
H.
,
Oldfield
,
E. H.
, and
Dedrick
,
R. L.
,
1994
, “
High-Flow Microinfusion: Tissue Penetration and Pharmacodynamics
,”
Am. J. Physiol.
,
266
, pp.
R292
R305
. Available at: http://ajpregu.physiology.org/content/266/1/R292.abstract
3.
Kunwar
,
S.
,
Prados
,
M. D.
,
Chang
,
S. M.
,
Berger
,
M. S.
,
Lang
,
F. F.
,
Piepmeier
,
J. M.
,
Sampson
,
J. H.
,
Ram
,
Z.
,
Gutin
,
P. H.
,
Gibbons
,
R. D.
,
Aldape
,
K. D.
,
Croteau
,
D. J.
,
Sherman
,
J. W.
, and
Puri
,
R. K.
,
2007
, “
Direct Intracerebral Delivery of Cintredekin Besudotox (IL13-PE38QQR) in Recurrent Malignant Glioma: A Report by the Cintredekin Besudotox Intraparenchymal Study Group
,”
J. Clin. Onocol.
,
25
, pp.
837
844
.10.1200/JCO.2006.08.1117
4.
Sampson
,
J. H.
,
Archer
,
G.
,
Pedain
,
C.
,
Wembacher-Schröder
,
E.
,
Westphal
,
M.
,
Kunwar
,
S.
,
Vogelbaum
,
M. A.
,
Coan
,
A.
,
Herndon
, II
. J. E.
,
Raghavan
,
R.
,
Brady
,
M. L.
,
Reardon
,
D. A.
,
Friedman
,
A. H.
,
Friedman
,
H. S.
,
Rodríguez-Ponce
,
M. I.
,
Chang
,
S. M.
,
Mittermeyer
,
S.
,
Croteau
,
D.
, and
Puri
,
R. K.
,
2010
, “
Poor Drug Distribution as a Possible Explanation for the Results of the PRECISE Trial
,”
J. Neurosurg.
,
113
, pp.
301
309
.10.3171/2009.11.JNS091052
5.
Mueller
,
S.
,
Polley
,
M.-Y.
,
Lee
,
B.
,
Kunwar
,
S.
,
Pedain
,
C.
,
Wembacher-Schröder
,
E.
,
Mittermeyer
,
S.
,
Westphal
,
M.
,
Sampson
,
J. H.
,
Vogelbaum
,
M. A.
,
Croteau
,
D.
, and
Chang
,
S. M.
,
2011
, “
Effect of Imaging and Catheter Characteristics on Clinical Outcome for Patients in the PRECISE Study
,”
J. Neurooncol.
,
101
, pp.
267
277
.10.1007/s11060-010-0255-0
6.
Sampson
,
J. H.
,
Brady
,
M. L.
,
Petry
,
N. A.
,
Croteau
,
D.
,
Friedman
,
A. H.
,
Friedman
,
H. S.
,
Wong
,
T.
,
Bigner
,
D. D.
,
Pastan
,
I.
,
Puri
,
R. K.
, and
Pedain
,
C.
,
2007
, “
Intracerebral Infusate Distribution by Convection-Enhanced Delivery in Humans With Malignant Gliomas: Descriptive Effects of Target Anatomy and Catheter Positioning
,”
Neurosurgery
,
60
, pp.
ONS
-
89–ONS-99
.10.1227/01.NEU.0000249256.09289.5F
7.
Sampson
,
J. H.
,
Raghavan
,
R.
,
Brady
,
M. L.
,
Provenzale
,
J. M.
,
Herndon
, II
. J. E.
,
Croteau
,
D.
,
Friedman
,
A. H.
,
Reardon
,
D. A.
,
Coleman
,
R. E.
,
Wong
,
T.
,
Bigner
,
D. D.
,
Pastan
,
I.
,
Rodríguez-Ponce
,
M. I.
,
Tanner
,
P.
,
Puri
,
R.
, and
Pedain
,
C.
,
2007
, “
Clinical Utility of a Patient-Specific Algorithm for Simulating Intracerebral Drug Infusions
,”
Neuro-Oncology
,
9
, pp.
343
353
.10.1215/15228517-2007-007
8.
Varenika
,
V.
,
Dickinson
,
P.
,
Bringas
,
J.
,
LeCouteur
,
R.
,
Higgins
,
R.
,
Park
,
J.
,
Fiandaca
,
M.
,
Berger
,
M.
,
Sampson
,
J.
, and
Bankiewicz
,
K.
,
2008
, “
Detection of Infusate Leakage in the Brain Using Real-Time Imaging of Convection-Enhanced Delivery
,”
J. Neurosurg.
,
109
, pp.
874
880
.10.3171/JNS/2008/109/11/0874
9.
Chen
,
M. Y.
,
Lonser
,
R. R.
,
Morrison
,
P. F.
,
Governale
,
L. S.
, and
Oldfield
,
E. H.
,
1999
, “
Variables Affecting Convection-Enhanced Delivery to the Striatum: A Systematic Examination of Rate of Infusion, Cannula Size, Infusate Concentration, and Tissue–Cannula Sealing Time
,”
J. Neurosurg.
,
90
, pp.
315
320
.10.3171/jns.1999.90.2.0315
10.
Chen
,
Z.-J.
,
Broaddus
,
W. C.
,
Viswanathan
,
R. R.
,
Raghavan
,
R.
, and
Gillies
,
G. T.
,
2002
, “
Intraparenchymal Drug Delivery Via Positive-Pressure Infusion: Experimental and Modeling Studies of Poroelasticity in Brain Phantom Gels
,”
IEEE Trans. Biomed. Eng.
,
49
, pp.
85
96
.10.1109/10.979348
11.
Chen
,
Z.-J.
,
Gillies
,
G. T.
,
Broaddus
,
W. C.
,
Prabhu
,
S. S.
,
Fillmore
,
H.
,
Mitchell
,
R. M.
,
Corwin
,
F. D.
, and
Fatouros
,
P. P.
,
2004
, “
A Realistic Brain Tissue Phantom for Intraparenchymal Infusion Studies
,”
J. Neurosurg.
,
101
, pp.
314
322
.10.3171/jns.2004.101.2.0314
12.
Chen
,
X.
,
Astary
,
G. W.
,
Sepulveda
,
H.
,
Mareci
,
T. H.
, and
Sarntinoranont
,
M.
,
2008
, “
Quantitative Assessment of Macromolecular Concentration During Direct Infusion Into an Agarose Hydrogel Phantom Using Contrast-Enhanced MRI
,”
Magn. Reson. Imaging
,
26
, pp.
1433
1441
.10.1016/j.mri.2008.04.011
13.
Ivanchenko
,
O.
,
Sindhwani
,
N.
, and
Linninger
,
A.
,
2010
, “
Experimental Techniques for Studying Poroelasticity in Brain Phantom Gels Under High Flow Microinfusion
,”
ASME J. Biomech. Eng.
,
132
, p.
051008
.10.1115/1.4001164
14.
Raghavan
,
R.
,
Mikaelian
,
S.
,
Brady
,
M.
, and
Chen
,
Z.-J.
,
2010
, “
Fluid Infusions from Catheters Into Elastic Tissue: I. Azimuthally Symmetric Backflow in Homogenous Media
,”
Phys. Med. Biol.
,
55
, pp.
281
304
.10.1088/0031-9155/55/1/017
15.
Sindhwani
,
N.
,
Ivanchenko
,
O.
,
Lueshen
,
E.
,
Prem
,
K.
, and
Linninger
,
A. A.
,
2011
, “
Methods for Determining Agent Concentration Profiles in Agarose Gel During Convection-Enhanced Delivery
,”
IEEE Trans. Biomed. Eng.
,
58
, pp.
626
632
.10.1109/TBME.2010.2089455
16.
Krauze
,
M. T.
,
Saito
,
R.
,
Noble
,
C.
,
Tamas
,
M.
,
Bringas
,
J.
,
Park
,
J. W.
,
Berger
,
M. S.
, and
Bankiewicz
,
K.
,
2005
, “
Reflux-Free Cannula for Convection-Enhanced High-Speed Delivery of Therapeutic Agents
,”
J. Neurosurg.
,
103
, pp.
923
929
.10.3171/jns.2005.103.5.0923
17.
Barry
,
S. I.
, and
Aldis
,
G. K.
,
1992
, “
Flow-Induced Deformation from Pressurized Cavities in Absorbing Porous Tissues
,”
Bull. Math. Biol.
,
54
, pp.
977
997
.http://www.sciencedirect.com/science/article/pii/S0092824005800916
18.
Basser
,
P. J.
,
1992
, “
Interstitial Pressure, Volume, and Flow During Infusion Into Brain Tissue
,”
Microvascular Res.
,
44
, pp.
143
165
.10.1016/0026-2862(92)90077-3 Available at: http://www.sciencedirect.com/science/article/pii/S0092824005800916
19.
Chen
,
X.
, and
Sarntinoranont
,
M.
,
2007
, “
Biphasic Finite Element Model of Solute Transport for Direction Infusion Into Nervous Tissue
,”
Ann. Biomed. Eng.
,
35
, pp.
2145
2158
.10.1007/s10439-007-9371-1
20.
García
,
J. J.
, and
Smith
,
J. H.
,
2009
, “
A Biphasic Hyperelastic Model for the Analysis of Fluid and Mass Transport in Brain Tissue
,”
Ann. Biomed. Eng.
,
37
, pp.
375
386
.10.1007/s10439-008-9610-0
21.
Linninger
,
A. A.
,
Somayaji
,
M. R.
,
Erickson
,
T.
,
Guo
,
X.
, and
Penn
,
R. D.
,
2008
, “
Computational Methods for Predicting Drug Transport in Anisotropic and Heterogeneous Brain Tissue
,”
J. Biomech.
,
41
, pp.
2176
2187
.10.1016/j.jbiomech.2008.04.025
22.
Linninger
,
A. A.
,
Somayaji
,
M. R.
,
Mekarski
,
M.
, and
Zhang
,
L.
,
2008
, “
Prediction of Convection-Enhanced Drug Delivery to the Human Brain
,”
J. Theor. Biol.
,
250
, pp.
125
138
.10.1016/j.jtbi.2007.09.009
23.
Linninger
,
A. A.
,
Somayaji
,
M. R.
,
Zhang
,
L.
,
Hariharan
,
M. S.
, and
Penn
,
R. D.
,
2008
, “
Rigorous Mathematical Modeling Techniques for Optimal Delivery of Macromolecules to the Brain
,”
IEEE Trans. Biomed. Eng.
,
55
, pp.
2303
2313
.10.1109/TBME.2008.923920
24.
Netti
,
P. A.
,
Travascio
,
F.
, and
Jain
,
R. K.
,
2003
, “
Coupled Macromolecular Transport and Gel Mechanics: Poroviscoelastic Approach
,”
AIChE J.
,
49
, pp.
1580
1596
.10.1002/aic.690490621
25.
Sarntinoranont
,
M.
,
Banerjee
,
R. K.
,
Lonser
,
R. R.
, and
Morrison
,
P. F.
,
2003
, “
A Computational Model of Direct Interstitial Infusion of Macromolecules Into the Spinal Cord
,”
Ann. Biomed. Eng.
,
31
, pp.
448
461
.10.1114/1.1558032
26.
Sarntinoranont
,
M.
,
Chen
,
X.
,
Zhao
,
J.
, and
Mareci
,
T. H.
,
2006
, “
Computational Model of Interstitial Transport in the Spinal Cord Using Diffusion Tensor Imaging
,”
Ann. Biomed. Eng.
,
34
, pp.
1304
1321
.10.1007/s10439-006-9135-3
27.
Smith
,
J. H.
, and
García
,
J. J.
,
2009
, “
A Nonlinear Biphasic Model of Flow-Controlled Infusion in Brain: Fluid Transport and Tissue Deformation Analyses
,”
J. Biomech.
,
42
, pp.
2017
2025
.10.1016/j.jbiomech.2009.06.014
28.
Smith
,
J. H.
, and
García
,
J. J.
,
2011
, “
A Nonlinear Biphasic Model of Flow-Controlled Infusion in Brain: Mass Transport Analyses
,”
J. Biomech.
,
44
, pp.
524
531
.10.1016/j.jbiomech.2010.09.010
29.
Smith
,
J. H.
, and
Humphrey
,
J. A. C.
,
2007
, “
Interstitial Transport and Transvascular Fluid Exchange During Infusion into Brain and Tumor Tissue
,”
Microvascular Res.
,
73
, pp.
58
73
.10.1016/j.mvr.2006.07.001
30.
Smith
,
J. H.
,
Starkweather
,
K. A.
, and
García
,
J. J.
,
2012
, “
Implications of Transvascular Fluid Exchange in Nonlinear, Biphasic Analyses of Flow-Controlled Infusion in Brain
,”
Bull. Math. Biol.
,
74
, pp.
881
907
.10.1007/s11538-011-9696-7
31.
Morrison
,
P. F.
,
Chen
,
M. Y.
,
Chadwick
,
R. S.
,
Lonser
,
R. R.
, and
Oldfield
,
E. H.
,
1999
, “
Focal Delivery During Direct Infusion to Brain: Role of Flow Rate, Catheter Diameter, and Tissue Mechanics
,”
Am. J. Physiol.
,
277
, pp.
R1218
R1229
. Available at: http://ajpregu.physiology.org/content/277/4/R1218.abstract
32.
Franceschini
,
G.
,
Bigoni
,
D.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2006
, “
Brain Tissue Deforms Similarly to Filled Elastomers and Follows Consolidation Theory
,”
J. Mech. Phys. Solids
,
54
, pp.
2592
2620
.10.1016/j.jmps.2006.05.004
33.
Kaster
,
T.
,
Sack
,
I.
, and
Samani
,
A.
,
2011
, “
Measurement of the Hyperelastic Property of Ex Vivo Brain Tissue Slices
,”
J. Biomech.
,
44
, pp.
1158
1163
.10.1016/j.jbiomech.2011.01.019
34.
Miller
,
K.
, and
Chinzei
,
K.
,
1997
, “
Constitutive Modelling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
,
30
, pp.
1115
1121
.10.1016/S0021-9290(97)00092-4
35.
Miller
,
K.
, and
Chinzei
,
K.
,
2002
, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
,
35
, pp.
483
490
.10.1016/S0021-9290(01)00234-2
36.
Valles
,
F.
,
Fiandaca
,
M. S.
,
Bringas
,
J.
,
Dickinson
,
P.
,
LeCouteur
,
R.
,
Higgins
,
R.
,
Berger
,
M.
,
Forsayeth
,
J.
, and
Bankiewicz
,
K. S.
,
2009
, “
Anatomic Compression Caused by High-Volume Convection-Enhanced Delivery to the Brain
,”
Neurosurgery
,
65
, pp.
579
586
.10.1227/01.NEU.0000350229.77462.2F
37.
Simulia
,
2009
, “
ABAQUS 6.9 Documentation
,”
online
.
38.
Wilson
,
W.
,
van Donkellar
,
C. C.
,
van Rietbergen
,
B.
, and
Huiskes
,
R.
,
2005
, “
A Fibril-Reinforced Poroviscoelastic Swelling Model for Articular Cartilage
,”
J. Biomech.
,
38
, pp.
1195
1204
.10.1016/j.jbiomech.2004.07.003
You do not currently have access to this content.