To make full use of the newly available information provided by the intelligent transportation system (ITS), we presented a new car-following model applicable to automated driving control, which will be realized in the near future along with the rapid development of ITS. In this model, the backward-looking effect and the information inputs from multiple leading cars in traffic flow are considered at the same time. The linear stability criterion of this model is obtained using linear stability theory. Furthermore, the nonlinear analysis method is employed to derive the modified Korteweg-de Vries (mKdV) equation, whose kink-antikink soliton solution is then used to describe the occurrence of traffic jamming transitions. The numerical simulation of the presented model is carried out. Both the analytical analysis and numerical simulation show that the traffic jam is suppressed efficiently by just considering the information of two leading cars and a following one.

References

References
1.
Wei
,
S.
, and
Yu
,
X.
,
2007
, “
Study on Stability and Energy Consumption in Typical Car-Following Models
,”
Physica A
,
381
, pp.
399
406
.10.1016/j.physa.2007.02.106
2.
Tang
,
T. Q.
,
Huang
,
H. J.
,
Wong
,
S. C.
,
Gao
,
Z. Y.
, and
Zhang
,
Y.
,
2009
, “
A New Macro Model for Traffic Flow on a Highway With Ramps and Numerical Tests
,”
Commun. Theor. Phys.
,
51
(
1
), pp.
71
78
.10.1088/0253-6102/51/1/15
3.
Jin
,
Y. F.
,
Xu
,
M.
, and
Gao
,
Z. Y.
,
2011
, “
KdV and Kink-Antikink Solitons in an Extended Car-Following Model
,”
J. Comput. Nonlinear Dyn.
,
6
(
1
), p.
011018
.10.1115/1.4002336
4.
Tang
,
T. Q.
,
Li
,
C. Y.
, and
Huang
,
H. J.
,
2010
, “
A New Car-Following Model With the Consideration of the Driver's Forecast Effect
,”
Phys. Lett. A
,
374
(
38
), pp.
3951
3956
.10.1016/j.physleta.2010.07.062
5.
Meng
,
X.
, and
Ziyou
,
G.
,
2008
, “
Nonlinear Analysis of Road Traffic Flows in Discrete Dynamical System
,”
J. Comput. Nonlinear Dyn.
,
3
(
1
), p.
021206
.
6.
Tordeux
,
A.
,
Lassarre
,
S.
, and
Roussignol
,
M.
,
2010
, “
An Adaptive Time Gap Car-Following Model
,”
Transp. Res., Part B: Methodol.
,
44
(
8-9
), pp.
1115
1131
.10.1016/j.trb.2009.12.018
7.
Bando
,
M.
,
Hasebe
,
K.
,
Nakayama
,
A.
,
Shibata
,
A.
, and
Sugiyama
,
Y.
,
1995
, “
Dynamical Model of Traffic Congestion and Numerical Simulation
,”
Phys. Rev. E
,
51
(
2
), pp.
1035
1042
.10.1103/PhysRevE.51.1035
8.
Wagner
,
C.
,
1998
, “
Asymptotic Solutions for a Multi-Anticipative Car-Following Model
,”
Physica A
,
260
(
1-2
), pp.
218
224
.10.1016/S0378-4371(98)00306-9
9.
Nagatani
,
T.
,
1999
, “
Stabilization and Enhancement of Traffic Flow by the Next-Nearest-Neighbor Interaction
,”
Phys. Rev. E
,
60
(
6
), pp.
6395
6401
.10.1103/PhysRevE.60.6395
10.
Helbing
,
D.
, and
Tilch
,
B.
,
1998
, “
Generalized Force Model of Traffic Dynamics
,”
Phys. Rev. E
,
58
(
1
), pp.
133
138
.10.1103/PhysRevE.58.133
11.
Ge
,
H. X.
,
Cheng
,
R. J.
, and
Dai
,
S. Q.
,
2005
, “
KdV and Kink-Antikink Solitons in Car-Following Models
,”
Physica A
,
357
(
3-4
), pp.
466
476
.10.1016/j.physa.2005.03.059
12.
Ge
,
H. X.
,
Cheng
,
R. J.
, and
Li
,
Z. P.
,
2008
, “
Two Velocity Difference Model for a Car Following Theory
,”
Physica A
,
387
(
21
), pp.
5239
5245
.10.1016/j.physa.2008.02.081
13.
Ge
,
H. X.
,
Dai
,
S. Q.
,
Xue
,
Y.
, and
Dong
,
L. Y.
,
2005
, “
Stabilization Analysis and Modified Korteweg-De Vries Equation in a Cooperative Driving System
,”
Phys. Rev. E
,
71
(
6
), p.
066119
.10.1103/PhysRevE.71.066119
14.
Peng
,
G. H.
, and
Sun
,
D. H.
,
2010
, “
A Dynamical Model of Car-Following With the Consideration of the Multiple Information of Preceding Cars
,”
Phys. Lett. A
,
374
(
15-16
), pp.
1694
1698
.10.1016/j.physleta.2010.02.020
15.
Peng
,
G.-H.
,
2010
, “
Stabilisation Analysis of Multiple Car-Following Model in Traffic Flow
,”
Chin. Phys. B
,
19
(
5
), p.
056401
.10.1088/1674-1056/19/5/056401
16.
Peng
,
G. H.
, and
Sun
,
D. H.
,
2009
, “
Multiple Car-Following Model of Traffic Flow and Numerical Simulation
,”
Chin. Phys. B
,
18
(
12
), pp.
5420
5430
.10.1088/1674-1056/18/12/049
17.
Jiang
,
R.
,
Wu
,
Q.
, and
Zhu
,
Z.
,
2001
, “
Full Velocity Difference Model for a Car-Following Theory
,”
Phys. Rev. E
,
64
(
1
), p.
017101
.10.1103/PhysRevE.64.017101
18.
Nakayama
,
A.
,
Sugiyama
,
Y.
, and
Hasebe
,
K.
,
2001
, “
Effect of Looking at the Car That Follows in an Optimal Velocity Model of Traffic Flow
,”
Phys. Rev. E
,
65
(
1
), p.
016112
.10.1103/PhysRevE.65.016112
19.
Hasebe
,
K.
,
Nakayama
,
A.
, and
Sugiyama
,
Y.
,
2003
, “
Dynamical Model of a Cooperative Driving System for Freeway Traffic
,”
Phys. Rev. E
,
68
(
2
), p.
026102
.10.1103/PhysRevE.68.026102
20.
Ge
,
H. X.
,
Zhu
,
H. B.
, and
Dai
,
S. Q.
,
2006
, “
Effect of Looking Backward on Traffic Flow in a Cooperative Driving Car Following Model
,”
Eur. Phys. J. B
,
54
(
4
), pp.
503
507
.10.1140/epjb/e2007-00014-x
You do not currently have access to this content.