Geometrically nonlinear structures often possess multiple equilibrium configurations. Under extreme conditions of excitation, it is possible for these structures to exhibit oscillations about and between these co-existing configurations. This behavior may have serious implications for fatigue in the context of aircraft surface panels. Snap-through is a name often given to sudden changes in dynamic behavior associated with mechanical instability (buckling). This is an often encountered problem in hypersonic vehicles in which severe thermal loading and acoustic excitation conspire to create an especially hostile environment for structural elements. In this paper, a simple link model is used, experimentally and numerically, to investigate the mechanisms of snap-through buckling from a phenomenological standpoint.

References

References
1.
Clarkson
,
B.
,
1994
, “
Review of Sonic Fatigue Technology
,” Technical Report, NASA Contract Report No. 4587.
2.
Suresh
,
S.
,
1998
,
Fatigue of Materials
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
3.
Virgin
,
L. N.
,
2007
,
Vibration of Axially Loaded Structures
,
Cambridge University Press
,
Cambridge, UK
.
4.
Timoshenko
,
S. P.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
,
2nd ed.
,
McGraw Hill
,
New York
.
5.
Chen
,
L. W.
, and
Chen
,
L. Y.
,
1987
, “
Thermal Buckling of Laminated Composite Plates
,”
J. Therm. Stresses
,
10
(
4
), pp.
345
356
.10.1080/01495738708927017
6.
Murphy
,
K. D.
,
Virgin
,
L. N.
, and
Rizzi
,
S. A.
,
1997
, “
The Effect of Thermal Prestress on the Free Vibration Characteristics of Clamped Rectangular Plates: Theory and Experiment
,”
J. Vibr. Acoust.
,
119
, pp.
243
249
.10.1115/1.2889710
7.
Ueda
,
Y.
,
1991
, “
Survey of Regular and Chaotic Phenomena in the Forced Duffing Oscillator
,”
Chaos, Solitons Fractals
,
1
, pp.
199
231
.10.1016/0960-0779(91)90032-5
8.
Virgin
,
L. N.
,
2000
,
Introduction to Experimental Nonlinear Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
9.
Thompson
,
J. M. T.
,
Bishop
,
S. R.
,
Leung
,
L. M.
,
1987
, “
Fractal Basins and Chaotic Bifurcations Prior to Escape From a Potential Well
,”
Phys. Lett. A
,
121
, pp.
116
120
.10.1016/0375-9601(87)90403-8
10.
Wiggins
,
S.
,
1987
, “
Chaos in the Quasiperiodically Forced Duffing Oscillator
,”
Phys. Lett. A
,
124
, pp.
138
142
.10.1016/0375-9601(87)90240-4
11.
Ario
,
I.
,
2004
, “
Homoclinic Bifurcation and Chaos Attractor in Elastic Two-Bar Truss
,”
Int. J. Non-linear Mech.
,
39
, pp.
605
617
.10.1016/S0020-7462(03)00002-7
12.
Addison
,
P. S.
,
Chan
,
A. H. C.
,
Ervine
,
D. A.
, and
Williams
,
K. J.
,
1992
, “
Observations on Numerical Method Dependent Solutions of a Modified Duffing Oscillator
,”
Commun. Appl. Numer. Methods
,
8
, pp.
519
528
.10.1002/cnm.1630080806
13.
Bardella
,
L.
, and
Genna
,
F.
,
2005
, “
Newmark’s Time Integration Method From Discretization of Extended Functionals
,”
J. Appl. Mech.
,
72
, pp.
527
538
.10.1115/1.1934648
14.
Nayfeh
,
A. H.
, and
Sanchez
,
N. E.
,
1989
, “
Bifurcations in a Forced Softening Duffing Oscillator
,”
Int. J. Non-linear Mech.
,
24
, pp.
483
497
.10.1016/0020-7462(89)90014-0
15.
Hsu
,
C.
,
1968
, “
Stability of Shallow Arches Against Snap-Through Under Timewise Step Loads
,”
J. Appl. Mech.
,
35
, pp.
31
39
.10.1115/1.3601170
16.
Rehfield
,
L.
,
1974
, “
Nonlinear Flexural Oscillations of Shallow Arches
,”
AIAA J.
,
12
, pp.
91
93
.10.2514/3.49158
17.
Johnson
,
E.
, and
McIvor
,
I.
,
1978
, “
The Effect of Spatial Distribution on Dynamic Snap-Through
,”
J. Appl. Mech.
,
45
, pp.
612
618
.10.1115/1.3424370
18.
Gregory
,
W.
, and
Plaut
,
R. H.
,
1982
, “
Dynamic Stability Boundaries for Shallow Arches
,”
J. Eng. Mech.
,
108
, pp.
1036
1050
.
19.
Plaut
,
R. H.
, and
Hsieh
,
J. C.
,
1985
, “
Oscillations and Instability of a Shallow Arch Under Two-Frequency Excitation
,”
J. Sound Vib.
,
102
, pp.
189
201
.10.1016/S0022-460X(85)80052-3
20.
Thompon
,
J. M. T.
, and
Hunt
,
G. W.
,
1973
,
A General Theory of Elastic Stability
.
Wiley
,
New York
.
21.
Goldstein
,
H.
,
Poole
,
C. P.
, and
Safko
,
J. L.
,
2001
,
Classical Mechanics
,
3rd ed.
,
Addison Wesley
,
Reading, MA
.
22.
Bigoni
,
D.
, and
Noselli
,
G.
,
2011
, “
Experimental Evidence of Flutter and Divergence Instabilities Induced by Dry Friction
,”
J. Mech. Phys. Solids
,
59
(
10
), pp.
2208
2226
.10.1016/j.jmps.2011.05.007
23.
Virgin
,
L. N.
,
1986
, “
Parametric Studies of the Dynamic Evolution Through a Fold
,”
J. Sound Vib.
,
110
, pp.
99
109
.10.1016/S0022-460X(86)80077-3
24.
Gottwald
,
J. A.
,
Virgin
,
L. N.
, and
Dowell
,
E. H.
,
1992
, “
Experimental Mimicry of Duffing’s Equation
,”
J. Sound Vib.
158
, pp.
447
467
.10.1016/0022-460X(92)90419-X
25.
Wu
,
G. Q.
,
Arzeno
,
N. M.
,
Shen
,
L. L.
,
Tang
,
D. K.
,
Zheng
,
D. A.
,
Zhao
,
N. Q.
,
Eckberg
,
D. L.
, and
Poon
,
C. S.
,
2009
, “
Chaotic Signatures of Heart Rate Variability and its Power Spectrum in Health, Aging and Hear Failure
,”
PLoS ONE
,
4
, pp.
1
9
.
26.
Xie
,
W. C.
,
2006
,
Dynamic Stability of Structures
.
Cambridge University Press
,
Cambridge, UK
.
27.
Wiebe
,
R.
, and
Virgin
,
L. N.
,
2012
, “
A Heuristic Method for Identifying Chaos From Frequency Content
,”
Chaos
,
22
(in press)
.10:1063/1.3675624
28.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
Luca
,
C. J. D.
,
1993
, “
A Practical Method for Calculating the Largest Lyapunov Exponents From Small Data Sets
,”
Physica D
,
65
, pp.
117
134
.10.1016/0167-2789(93)90009-P
You do not currently have access to this content.