Precision and stability in position control of robots are critical parameters in many industrial applications where high accuracy is needed. It is well known that digital effect is destabilizing and can cause instabilities. In this paper, we analyze a single DoF model of a robotic arm and we present the stability limits in the parameter space of the control gains. Furthermore we introduce a nonlinearity relative to the saturation of the control force in the model, reduce the dynamics of the nonlinear map to its local center manifold, study the bifurcation along the stability border and identify conditions under which a supercritical or subcritical bifurcation occurs. The obtained results explain some of the typical instabilities occurring in industrial applications. We verify the obtained results through numerical simulations.

References

References
1.
Gorinevsky
,
D. M.
,
Formalsky
,
A. M.
, and
Schneider
,
A. Y.
,
1997
,
Force Control of Robotics Systems
,
CRC Press LLC
,
Boca Raton, FL
.
2.
Siciliano
,
B.
, and
Villani
,
L.
,
1999
,
Robot Force Control
,
Kluwer
,
Dordrecht
.
3.
Natale
,
C.
,
2003
,
Interaction Control of Robot Manipulators
,
Springer
,
New York
.
4.
Colgate
,
E.
, and
Schenkel
,
G. G.
,
1997
, “
Passivity of a Class of Sampled-Data Systems: Application to Haptic Interfaces
,”
J. Rob. Syst.
14
(
1
), pp.
37
47
.
5.
Gil
,
J. J.
,
Avello
,
A.
,
Rubio
,
A.
, and
Florez
,
J.
,
2004
, “
Stability Analysis of a 1 DOF Haptic Interface Using the Routh-Hurwitz Criterion
,”
IEEE Trans. Control Syst. Technol.
12
, pp.
583
588
.10.1109/TCST.2004.825134
6.
Kovacs
,
L. L.
,
Kovecses
,
J.
, and
Stepan
,
G.
,
2008
, “
Analysis of Effects of Differential Gain on Dynamic Stability of Digital Force Control
,”
Int. J. Nonlinear Mech.
43
, pp.
514
520
.10.1016/j.ijnonlinmec.2008.04.002
7.
Stepan
,
G.
,
2001
, “
Vibrations of Machines Subjected to Digital Force Control
,”
Int. J. Solids Struct.
,
38
, pp.
2149
2159
.10.1016/S0020-7683(00)00158-X
8.
Hamzi
,
B.
,
Barbot
,
J. P.
,
Monaco
,
S.
, and
Normand-Cyrot
,
D.
,
2001
, “
Nonlinear Discrete-Time Control of Systems with a Naimark-Sacker Bifurcation
,”
Syst. Control Lett.
,
44
(
4
), pp.
245
258
.10.1016/S0167-6911(01)00136-0
9.
Yaghoobi
,
H.
, and
Abed
,
E. H.
,
2003
, “
Local Feedback Control of the Naimark-Sacker Bifurcation
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
13
(
4
), pp.
879
893
.10.1142/S0218127403006972
10.
Yuan
,
Z.
,
Hu
,
D.
, and
Huang
,
L.
,
2005
, “
Stability and Bifurcation Analysis on a Discrete-Time Neural Network
,”
J. Comput. Math.
,
177
, pp.
89
100
.10.1016/j.cam.2004.09.010
11.
Guckenheimer
,
J.
, and
Holmes
,
P.
,
1986
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields
,
Springer
,
New York
.
12.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics
,
Wiley
,
New York
.
13.
Troger
,
H.
, and
Steindl
,
A.
,
1991
,
Nonlinear Stability and Bifurcation Theory
,
Springer
,
New York
.
14.
Szalai
,
R.
,
Stepan
,
G.
, and
Hogan
,
S. J.
,
2004
, “
Global Dynamics of Low Immersion High-Speed Milling
,”
Chaos.
14
(
4
), pp.
1069
1077
.
15.
Kuznetsov
,
Y. A.
,
1998
,
Elements of Applied Bifurcation Theory
,
Springer
,
New York
.
16.
Moon
,
F. C.
,
1992
,
Chaotic and Fractal Dynamics: an Introduction for Applied Scientists and Engineers
,
Wiley
,
New York
.
17.
Farmer
,
J. D.
,
Ott
,
E.
, and
York
,
J. A.
,
1983
, “
The Dimension of Chaotic Attractors
,”
Physica D
,
7
,
153
170
.10.1016/0167-2789(83)90125-2
18.
Grassberger
,
P.
, and
Procaccia
,
I.
,
1983
, “
Characterization of Strange Attractors
,”
Phys. Rev. Lett.
,
50
(
5
), pp.
346
349
.10.1103/PhysRevLett.50.346
19.
Hilborn
,
R. C.
,
2001
,
Chaos and Nonlinear Dynamics: an Introduction for Scientists and Engineers
,
Oxford University
,
New York
.
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview
You do not currently have access to this content.