In this study, a two-component autoparametric resonator utilizing piezoelectric actuation is proposed. The resonator consists of a plate component which serves as the exciter and a beam component which serves as the oscillator. When an electric signal is applied, the plate component experiences in-plane oscillations which serve to provide axial excitation to the beam component. The system is designed to operate in autoparametric resonance with a plate to beam principal frequency ratio of 1:2. Due to the oscillations of the beam component, a dynamic force and a moment are applied to the plate and can cause out-of-plane oscillations of the plate component. The possibility of internal-resonance between the beam oscillations and the out-of-plane vibrations of the plate component are also considered. A model is derived in order to describe these three motions and the coupling between them. By assuming single mode behavior for each motion, the model is discretized and represented with a three degree-of-freedom model. The model is solved analytically by using the method of multiple scales and results are verified with the numerical simulations. Also, the influence of system parameters on response behavior is studied and the ideal operational conditions and parameter values for nominal performance are obtained.

References

References
1.
Rogers
,
B.
,
Sulchek
,
T.
,
Murray
,
K.
,
York
,
D.
,
Jones
,
M.
,
Manning
,
L.
,
Malekos
,
S.
,
Beneschott
,
B.
,
Adams
,
J.
,
Cavazos
,
H.
, and
Minne
,
S. C.
,
2003
, “
High Speed Tapping Mode Atomic Force Microscopy in Liquid Using an Insulated Piezoelectric Cantilever
,”
Rev. Sci. Instrum.
,
74
(
11
), pp.
4683
4686
.10.1063/1.1619548
2.
Zhang
,
W.
, and
Turner
,
K.
,
2004
, “
Noise Analysis in Parametric Resonance Based Mass Sensing
,”
Proc. ASME Int. Mech. Eng. Congress and Exposition
,
Anaheim, CA
, pp.
363
367
.
3.
Gupta
,
A.
,
Akin
,
D.
, and
Bashir
,
R.
,
2004
, “
Single Virus Particle Mass Detection Using Microresonators With Nanoscale Thickness
,”
Appl. Phys. Lett.
,
84
(
11
), pp.
1976
1978
.10.1063/1.1667011
4.
Wang
,
Z.
,
Zhou
,
Y.
,
Wang
,
C.
,
Zhang
,
Q.
,
Ruan
,
W.
, and
Liu
,
L.
,
2009
, “
A Theoretical Model for Surface-Stress Piezoresistive Microcantilever Biosensors With Discontinuous Layers
,”
Sens. Actuators B
,
138
(
2
), pp.
598
606
.10.1016/j.snb.2009.02.046
5.
Mahmoodi
,
S.
,
Afshari
,
M.
, and
Jalili
,
N.
,
2008
, “
Nonlinear Vibrations of Piezoelectric Microcantilevers for Biologically-Induced Surface Stress Sensing
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
9
), pp.
1964
1977
.10.1016/j.cnsns.2007.03.030
6.
Rhoads
,
J.
,
Shaw
,
S.
,
Turner
,
K.
, and
Baskaran
,
R.
,
2005
, “
Tunable Microelectromechanical Filters that Exploit Parametric Resonance
,”
J. Vibr. Acoust.
,
127
(
5
), pp.
423
430
.10.1115/1.2013301
7.
Rhoads
,
J.
,
Shaw
,
S.
,
Turner
,
K.
,
Moehlis
,
J.
,
DeMartini
,
B.
, and
Zhang
,
W.
,
2006
, “
Generalized Parametric Resonance in Electrostatically Actuated Microelectromechanical Oscillators
,”
J. Sound Vib.
,
296
(
4-5
), pp.
797
829
.10.1016/j.jsv.2006.03.009
8.
Li
,
H.
,
Preidikman
,
S.
,
Balachandran
,
B.
, and
Mote
,
C.
,
2006
, “
Nonlinear Free and Forced Oscillations of Piezoelectric Microresonators
,”
J. Micromech. Microeng.
,
16
(
2
), pp.
356
367
.10.1088/0960-1317/16/2/021
9.
Lu
,
J.
,
Ikehara
,
T.
,
Kobayashi
,
T.
,
Maeda
,
R.
, and
Mihara
,
T.
,
2006
, “
Quality Factor of Micro Cantilevers Transduced by Piezoelectric Lead Zirconate Titanate Film
,”
Microsyst. Technol.
,
13
(
11
), pp.
1517
1522
.10.1007/s00542-006-0272-2
10.
Baskaran
,
R.
, and
Turner
,
K.
,
2003
, “
Mechanical Domain Coupled Mode Parametric Resonance and Amplification in a Torsional Mode Micro Electro Mechanical Oscillator
,”
J. Micromech. Microeng.
,
13
(
5
), pp.
701
707
.10.1088/0960-1317/13/5/323
11.
Vyas
,
A.
,
Peroulis
,
D.
, and
Bajaj
,
A.
,
2008
, “
Dynamics of a Nonlinear Microresonator Based on Resonantly Interacting Flexural-Torsional Modes
,”
Nonlinear Dyn.
,
54
(
1
), pp.
31
52
.10.1007/s11071-007-9326-y
12.
Zurn
,
S.
,
Hsieh
,
M.
,
Smith
,
G.
,
Markus
,
D.
,
Zang
,
M.
,
Hughes
,
G.
,
Nam
,
Y.
,
Arik
,
M.
, and
Polla
,
D.
,
2001
, “
Fabrication and Structural Characterization of a Resonant Frequency PZT Microcantilever
,”
Smart Mater. Struct
,
10
(
2
), pp.
252
263
.10.1088/0964-1726/10/2/310
13.
DeVoe
,
D.
, and
Pisano
,
A.
,
1997
, “
Modeling and Optimal Design of Piezoelectric Cantilever Microactuators
,”
J. Microelectromech. Syst.
,
6
(
3
), pp.
266
270
.10.1109/84.623116
14.
Nima Mahmoodi
,
S.
, and
Jalili
,
N.
,
2007
, “
Non-Linear Vibrations and Frequency Response Analysis of Piezoelectrically Driven Microcantilevers
,”
Int. J. of Non-Linear Mech.
,
42
(
4
), pp.
577
587
.10.1016/j.ijnonlinmec.2007.01.019
15.
Zhang
,
W.
, and
Meng
,
G.
,
2007
, “
Nonlinear Dynamic Analysis of Electrostatically Actuated Resonant MEMS Sensors Under Parametric Excitation
,”
IEEE Sens. J.
,
7
(
3
), pp.
370
380
.10.1109/JSEN.2006.890158
16.
Zheng
,
L.
, and
Lu
,
M.
,
2005
, “
A Large-Displacement CMOS-Micromachined Thermal Actuator With Capacitive Position Sensing
,”
Asian Solid-State Circuits Conf.
,
Citeseer
, pp.
89
92
.
17.
Grigorov
,
A.
,
Davis
,
Z.
,
Rasmussen
,
P.
, and
Boisen
,
A.
,
2004
, “
A Longitudinal Thermal Actuation Principle for Mass Detection Using a Resonant Micro-Cantilever in a Fluid Medium
,”
Microelectron. Eng.
,
73–74
(
1
), pp.
881
886
.10.1016/S0167-9317(04)00238-2
18.
Seo
,
J.
, and
Brand
,
O.
,
2006
, “
Self-Magnetic Excitation for In-Plane Mode Resonant Microsensor
,”
19th IEEE International Conference on Micro Electro Mechanical Systems
,
2006
,
MEMS 2006
,
Istanbul
, pp.
74
77
.
19.
DeVoe
,
D.
,
2000
, “
Piezoelectric Thin Film Micromachined Beam Resonators
,”
Sens. Actuators A
,
88
(
3
), pp.
263
272
.
20.
Lai
,
W.
, and
Fang
,
W.
,
2001
, “
A Novel Antistiction Method Using Harmonic Excitation on the Microstructure
,”
J. Vac. Sci. Technol. A
,
19
(
4
), pp.
1224
1228
.10.1116/1.1353542
21.
Anderson
,
T.
,
Nayfeh
,
A.
, and
Balachandran
,
B.
,
1996
, “
Experimental Verification of the Importance of the Nonlinear Curvature in the Response of a Cantilever Beam
,”
J. Vibr. Acoust.
,
118
(
1
), pp.
21
27
.10.1115/1.2889630
22.
Vyas
,
A.
,
Peroulis
,
D.
, and
Bajaj
,
A.
,
2008
, “
A Microresonator Design Based on Nonlinear 1: 2 Internal Resonance in Flexural Structural Modes
,”
J. Microelectromech. Syst.
,
18
(
3
), pp.
744
762
.10.1109/JMEMS.2009.2017081
23.
Vyas
,
A.
,
Bajaj
,
A. K.
,
Raman
,
A.,
and
Peroulis
,
D.
,
2006
, “
Nonlinear Micromechanical Filters Based on Internal Resonance Phenomenon
,”
Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF ’06), Digest of Papers, San Diego, CA, Jan. 18–20
, pp.
35
38
.
24.
Nayfeh
,
A.
,
1987
, “
Parametric Excitation of Two Internally Resonant Oscillators
,”
J. Sound Vib.
,
119
(
1
), pp.
95
109
.10.1016/0022-460X(87)90191-X
25.
He
,
J.
, and
Lilley
,
C.
,
2008
, “
Surface Effect on the Elastic Behavior of Static Bending Nanowires
,”
Nano Lett.
,
8
(
7
), pp.
1798
1802
.10.1021/nl0733233
26.
Miller
,
R.
, and
Shenoy
,
V.
,
2000
, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
,
11
, pp.
139
147
.10.1088/0957-4484/11/3/301
27.
Chen
,
C.
,
Shi
,
Y.
,
Zhang
,
Y.
,
Zhu
,
J.
, and
Yan
,
Y.
,
2006
, “
Size Dependence of Young’s Modulus in Zno Nanowires
,”
Phys. Rev. Lett.
,
96
(
7
), pp. 075505-1–075505-4.10.1103/PhysRevLett.96.07550
28.
Farag
,
N.
, and
Pan
,
J.
,
1998
, “
On the Free and Forced Vibration of Single and Coupled Rectangular Plates
,”
J. Acoust. Soc. Am.
,
104
(
1
), pp.
204
216
.10.1121/1.423270
29.
Farag
,
N. and Pan, J.
,
1999
, “
Modal Characteristics of In-Plane Vibration of Rectangular Plates
,”
J. Acoust. Soc. Am.
,
105
, pp.
3295
3310
.10.1121/1.424658
30.
Fernandes
,
A.
, and
Pouget
,
J.
,
2003
, “
Analytical and Numerical Approaches to Piezoelectric Bimorph
,”
Int. J. Solids Struct.
,
40
(
17
), pp.
4331
4352
.10.1016/S0020-7683(03)00222-1
31.
Ikeda
,
T.
,
2011
,
Fundamentals of Piezoelectricity, 1900
,
Oxford University Press
,
Oxford
.
32.
Thomson
,
W.
,
2004
,
Theory of Vibration With Applications
,
Taylor & Francis
,
London
.
33.
Arafat
,
H.
,
Nayfeh
,
A.
, and
Chin
,
C.
,
1998
, “
Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams
,”
Nonlinear Dyn.
,
15
(
1
), pp.
31
61
.10.1023/A:1008218009139
34.
Piekarski
,
B.
,
DeVoe
,
D.
,
Dubey
,
M.
,
Kaul
,
R.
, and
Conrad
,
J.
,
2001
, “
Surface Micromachined Piezoelectric Resonant Beam Filters
,”
Sens. Actuators A
,
91
(
3
), pp.
313
320
.10.1016/S0924-4247(01)00601-X
35.
Leissa
,
A.
,
1973
, “
The Free Vibration of Rectangular Plates
,”
J. Sound Vib.
,
31
(
3
), pp.
257
293
.10.1016/S0022-460X(73)80371-2
36.
Mizusawa
,
T.
,
1986
, “
Natural Frequencies of Rectangular Plates With Free Edges
,”
J. Sound Vib.
,
105
(
3
), pp.
451
459
.10.1016/0022-460X(86)90171-9
37.
Liew
,
K.
,
Lam
,
K.
, and
Chow
,
S.
,
1990
, “
Free Vibration Analysis of Rectangular Plates Using Orthogonal Plate Function
,”
Comput. Struct.
,
34
(
1
), pp.
79
85
.10.1016/0045-7949(90)90302-I
38.
MATLAB
,
2011
,
version 7.12.0.635 (R2011a)
.
The MathWorks Inc.
,
Natick, Massachusetts
.
39.
Dormand
,
J.
, and
Prince
,
P.
,
1980
, “
A Family of Embedded Runge-Kutta Formulae
,”
J. Comput. Appl. Math.
,
6
(
1
), pp.
19
26
.
40.
Nayfeh
,
A.
, and
Mook
,
D.
,
2004,
Nonlinear Oscillations
,
Wiley-Vch Publications
,
Weinheim
.
You do not currently have access to this content.