A perturbation analysis of a Helmholtz-type resonator with one of the resonator ends replaced by a membrane is studied in this work. A membrane is known to exhibit nonlinear behavior under certain conditions; thus, when attached to a resonator system, it modifies the dynamic characteristics of the original system. This modified resonator system is modeled by coupled nonlinear differential equations and investigated by using the singular perturbation theory. The resonant frequency of the nonlinear resonator in the primary resonance case is analytically obtained using first-order approximate solutions. A good agreement is seen when the frequency response of the first-order approximate system is compared with the numerically simulated results.

References

References
1.
Pierce
,
A. D.
,
1981
,
Acoustics: An Introduction to its Physical Principles and Applications
,
McGraw-Hill, New York
.
2.
Temkin
,
S.
,
1981
,
Elements of Acoustics
,
John Wiley and Sons
,
New York
.
3.
Griffin
,
S.
,
Lane
,
S. A.
, and
Huybrechts
,
S.
,
2001
, “
Coupled Helmholtz Resonators for Acoustic Attenuation,
ASME J. Vibr. Acoust.
,
123
(
1
), pp.
11
17
.10.1115/1.1320812
4.
Selamat
,
A.
and
Lee
,
I.
,
2003
, “
Helmholtz Resonator With Extended Neck,
J. Acoust. Soc. Am.,
113
(
4
), pp.
1975
1985
.10.1121/1.1558379
5.
Tang
,
S.
,
2005
, “
On Helmholtz Resonators With Tapered Necks,
J. Sound Vib.
,
279
(
3–5
), pp.
1085
1096
.10.1016/j.jsv.2003.11.032
6.
de Bedout
,
J. M.
,
Franchek
,
M. A.
,
Bernhard
,
R. J.
, and
Mongeau
,
L.
,
1997
, “
Adaptive-Passive Noise Control With Self-Tuning Helmholtz Resonators,
J. Sound Vib.
,
202
(
1
), pp.
109
123
.10.1006/jsvi.1996.0796
7.
Esteve
,
S. J.
, and
Johnson
,
M. E.
,
2005
, “
Adaptive Helmholtz Resonators and Passive Vibration Absorbers for Cylinder Interior Noise Control,
J. Sound Vib.
,
288
(
4–5
), pp.
1105
1130
.10.1016/j.jsv.2005.01.017
8.
Yuan
,
J.
,
2007
, “
Active Helmholtz Resonator With Positive Real Impedance,
ASME J. Vibr. Acoust.
,
129
(
1
), pp.
94
100
.10.1115/1.2345678
9.
Maas
,
L. R. M.
,
1997
, “
On the Nonlinear Helmholtz Response of Almost-Enclosed Tidal Basins With Sloping Bottoms,
J. Fluid Mech.
,
349
, pp.
361
380
.10.1017/S0022112097006824
10.
Miles
,
J. W.
,
1981
, “
Nonlinear Helmholtz Oscillations in Harbours and Coupled Basins,
J. Fluid Mech.
,
104
, pp.
407
418
.10.1017/S0022112081002978
11.
Cao
,
H.
,
2005
, “
Primary Resonant Optimal Control for Homoclinic Bifurcations in Single-Degree-of-Freedom Nonlinear Oscillators,
Chaos, Solitons Fractals
,
24
(
5
), pp.
1387
1398
.10.1016/j.chaos.2004.09.084
12.
Farooq
,
U.
, and
Nudehi
,
S. S.
,
2007
, “
A Nonlinear Acoustic Resonator,
The 2007 ASME International Design Engineering Technical Conferences
, Paper No. DETC2007-34700,
21st Biennial Conference on Mechanical Vibration and Noise
,
Las Vegas, Nevada
(on DVD-ROM).
13.
Timoshenko
,
S.
,
1959
,
Theory of Plates and Shells,
2nd ed.
,
McGraw-Hill
,
New York
.
14.
Chobotov
,
V. A.,
and
Binder
,
R. C.
,
1964
, “
Nonlinear Response of a Circular Membrane to Sinusoidal Excitations,
J. Acoust. Soc. Am.
,
36
(
1
), pp.
59
73
.10.1121/1.1918914
15.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems,
3rd ed.
,
Prentice-Hall, Upper Saddle River
,
New Jersey
.
16.
Verhulst
,
F.
,
2005
,
Methods and Applications of Singular Perturbations: Boundary Layers and Multiple Timescale Dynamics
, 1st ed.,
Springer
,
New York
.
17.
Ferri
,
A.
, and
Heck
,
B.
,
1998
, “
Vibration Analysis of Dry Friction Damped Turbine Blades Using Singular Perturbation Theory,
ASME J. Vibr. Acoust.
,
120
(
2
), pp.
588
595
.10.1115/1.2893868
18.
Heck
,
B.,
and
Ferri
,
A.
,
1996
, “
Model Reduction of Coulomb Friction Damped Systems Using Singular Perturbation Theory,
ASME J. Dyn. Syst., Meas., Control
,
118
(
1
), pp.
85
91
.10.1115/1.2801155
19.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
1979
,
Nonlinear Oscillations
,
John Wiley and Sons
,
New York
.
You do not currently have access to this content.