The constant spread of commercial trades on railways demand development of alternative diagnostic systems, which are suitable to applications without electric supply and convenient for the industrial development and diffusion, which means low cost, good reliability, and high integrability. Similarly, it is possible to install navigation and traceability systems (for instance, by the use of global positioning systems—GPS—transmitters) to control on demand the travel history of the train and even that of each coach separately. Recent studies demonstrated the possibility to generate directly onboard the electric power needed to the supply of simple diagnostic systems based on low power sensors and integrated wireless transmission modules. The design of this kind of generators is based on the idea of converting the kinetic energy of train vibration to electric energy, through appropriate energy harvesters containing electromechanical transducers dimensioned ad hoc. The goal of this work is to validate the design procedure for energy harvesters addressed to the railway field. The input vibration source of the train has been simulated through numerical modeling of the vehicle and the final harvester prototype has been tested on a scaled roller rig. The innovative configuration of magnetic suspended proof mass is introduced in the design to fit the input vibration spectra of the vehicle. From the coupled study of the harvester generator and the vehicle, the effective output power of the device is predicted by means of a combination of experimental and simulation tests. The generator demonstrated the ability to supply a basic sensing and transceiving node by converting the kinetic energy of a train vibration in normal traveling conditions. The final device package is 150 × 125 × 95 mm, and its output voltage and current are 2.5 V and 50 mA, respectively, when the freight train velocity is 80 km/h. The corresponding output power is almost 100 mW.

References

References
1.
Roundy
,
S.
, 2005, “
On the Effectiveness of Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Struct.
,
16
, pp.
809
823
.
2.
Pohl
,
A.
, and
Seifert
,
F.
, 1996, “
Wirelessly Interrogable SAW-Sensors for Vehicular Applications
,”
Proceedings of Institute of Electrical and Electronics Engineers Instrumentation and Measuring Technology Conference
,
Brussels, Belgium
, pp.
1465
1468
.
3.
Roundy
,
S.
,
Wright
,
P. K.
, and
Rabaje
,
J.
, 2003, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
, pp.
1131
1144
.
4.
De Pasquale
,
G.
, and
Somà
,
A.
, 2010, “
Generatore piezoelettrico per sistemi di misura autoalimentati a bordo di convogli ferroviari
,” Atti XXXIX Convegno Nazionale Associazione Italiana per l’ Analisi delle Sollecitazioni., Maratea, pp.
233
234
.
5.
De Pasquale
,
G.
,
Somà
,
A.
,
Fraccarollo
,
F.
, 2012, “
Piezoelectric Energy Harvesting for Autonomous Sensors Network on Safety-Improved Railway Vehicles
,”
Proceedings of the Institution of Mechanical Engineers—Part C
[
J. Mech. Engr. Sci.
226
, pp.
1107
1117
].
6.
De Pasquale
,
G.
, and
Somà
,
A.
, 2010, “
Wireless Sensors Network Supplied by MEMS Energy Harvesters
,”
Proceedings of Smart Systems Integration
,
Como, Italy
.
7.
De Pasquale
,
G.
, and
Somà
,
A.
, 2011, “
Sistema di infomobilità e/o diagnostica autoalimentato e dispositivo harvester perfezionato di alimentazione di tale sistema
,” –Italy patent applicationTO2011A000694.
8.
Bosso
,
N.
,
Gugliotta
,
A.
, and
Somà
,
A.
, 2002, “
Multibody Simulation of a Freight Bogie With Friction Dampers
,”
Proceedings of the ASME/Institute of Electrical and Electronics Engineers Joint Railroad Conference
,
Washington, DC
, pp.
47
56
(2002).
9.
Bosso
,
N.
,
Gugliotta
,
A.
, and
Somà
,
A.
, 2009, “
Multibody Simulation of a Vehicle on a Full Scale Roller Rig
,”
Proceedings of the European Community on Computational Methods in Applied Sciences Multibody Dynamic
,
Warsaw, Poland
.
10.
Mann
,
B. P.
, and
Sims
,
N. D.
, 2009, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
, pp.
515
530
.
11.
Duffing
,
G.
, 1918,
Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung
,
Verlag Vieweg
,
Braunschweig
.
12.
Haliday
,
D.
, and
Resnick
,
R.
, 1988,
Fundamentals of Physics
,
3rd Ed.
,
Wiley
,
New York
.
13.
Priya
,
S.
, and
Inman
,
D. J.
, 2008,
Energy Harvesting Technologies
,
Springer
,
New York
.
14.
Saha
,
C. R.
,
O’Donnell
,
T.
,
Loder
,
H.
,
Beeby
,
S.
,
Tudor
,
J.
, and
Saha
,
J.
, 2006, “
Optimization of an Electromagnetic Energy Harvesting Device
,”
IEEE Trans. Magn.
42
, pp.
3509
3511
.
15.
Genta
,
G.
, 1992,
Principi e metodologie della progettazione meccanica
, Vol.
2 II
ed.,
Levrotto & Bella
,
Torino
.
16.
Thomson
,
W.
, 1974
Vibrazioni meccaniche. Teoria ed applicazioni
,
Tamburini Editore
,
Milan
.
17.
Kalker
,
J. J.
, 1982, “
A Fast Algorithm for the Simplified Theory of Rolling Contact
,”
Vehicle Sys. Dyn.
,
11
, pp.
1
13
.
18.
Kalker
,
J. J.
, 1990,
Three-Dimensional Elastic Bodies in Rolling Contact
,
Kluwer Academic Publishers
,
Dordecht
.
You do not currently have access to this content.