The limitation on the top velocity of high-speed trains concerns the ability to supply the proper amount of energy required to run the engines through the catenary-pantograph interface. Due to the loss of contact, not only the energy supply is interrupted, but also arching between the collector bow of the pantograph and the contact wire of the catenary occurs, leading to the deterioration of the functional conditions of the two systems. An alternative would be to increase the contact force between the two systems. But such force increase would lead to a rapid wear of the contact strip of the pantograph and of the contact wire with negative consequences on the durability of the systems. These situations require that the dynamics of the pantograph-catenary are properly modeled and that software used for analysis, design, or to support maintenance decisions is not only accurate and efficient, but also allows for modeling all details relevant to the train overhead energy collector operation. This work presents a fully three-dimensional methodology for the computational analysis of the interaction between catenary and pantographs. The finite element method (FEM) is used to support the modeling of the catenary, while a multibody (MB) dynamics methodology is applied to support the pantograph modeling. The contact between the two subsystems is described using a penalty contact formulation. A high-speed co-simulation procedure is proposed to ensure the communication between the two methodologies. In order to validate the formulation and models developed, the numerical results are compared against experimental data. The proposed methodology is then applied to study the interaction of multiple pantographs of a high-speed train with the catenary. The results show that the passage of the front pantograph excites the catenary, leading to the deterioration of the contact conditions on the rear one.

References

References
1.
Gardou
,
M.
, 1984, Etude Du Comportement Dynamique De Lxensemble Pantographe-Caténaire (Study of the Dynamic Behavior of the Pantograph-Catenary) (in French), Conservatoire National des Arts et PhD thesis, Paris, France.
2.
Jensen
,
C.
, 1997, “
Nonlinear Systems With Discrete and Discontinuous Elements
,” Ph.D. thesis, Technical University of Denmark, Lyngby, Denmark.
3.
Dahlberg
,
T.
, 2006, “
Moving Force on an Axially Loaded Beam—With Applications to a Railway Overhead Contact Wire
,”
Veh. Syst. Dyn.
,
44
(
8
), pp.
631
644
.
4.
Labergri
,
F.
, 2000, “
Modélisation Du Comportement Dynamique Du Système Pantographe-Caténaire (Model for the Dynamic Behavior of the System Pantograph-Catenary) (in French)
,” Ph.D. thesis, Ecole Central de Lyon, Lyon, France.
5.
Seo
,
J.-H.
,
Kim
,
S.-W.
,
Jung
,
I.-H.
,
Park
,
T.-W.
,
Mok
,
J.-Y.
,
Kim
,
Y.-G.
, and
Chai
,
J.-B.
, 2006, “
Dynamic Analysis of a Pantograph-Catenary System Using Absolute Nodal Coordinates
,”
Veh. Syst. Dyn.
,
44
(
8
), pp.
615
630
.
6.
Ambrósio
,
J.
,
Rauter
,
F.
,
Pombo
,
J.
, and
Pereira
,
M.
, 2010, “
A Flexible Multibody Pantograph Model for the Analysis of the Catenary-Pantograph Contact
,”
Multibody Dynamics: Computational Methods and Applications, Computational Methods in Applied Sciences
,
K.
Arczewski
, eds.,
Springer
,
Dordrecht, The Netherlands
.
7.
Arnold
,
M.
, and
Simeon
,
B.
, 2000, “
Pantograph and Catenary Dynamics: A Benchmark Problem and Its Numerical Solution
,”
Appl. Numer. Math.
,
34
(
4
), pp.
345
362
.
8.
Jerrelind
,
J.
, and
Stensson
,
A.
, 2003, “
Nonlinear Dynamic Behaviour of Coupled Suspension Systems
,”
Meccanica
,
38
, pp.
43
59
.
9.
Mei
,
G.
,
Zhang
,
W.
,
Zhao
,
H.
, and
Zhang
,
L.
, 2006, “
A Hybrid Method to Simulate the Interaction of Pantograph and Catenary on Overlap Span
,”
Veh. Syst. Dyn.
,
44
(
S1
), pp.
571
580
.
10.
Rauter
,
F.
,
Pombo
,
J.
,
Ambrósio
,
J.
, and
Pereira
,
M.
, 2007, “
Multibody Modeling of Pantographs for Catenary-Pantograph Interaction
,”
Iutam Symposium on Multiscale Problems in Multibody System Contacts
,
P.
Eberhard
, ed.,
Springer
,
Dordrecht, The Netherlands
.
11.
Rauter
,
F.
,
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Bobillot
,
A.
, and
Chalansonnet
,
J.
, 2007, “
Contact Model for the Pantograph-Catenary Interaction
,”
JSME Int. J. Syst. Des. Dyn.
,
1
(
3
), pp.
447
457
.
12.
Seo
,
J.-H.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
, 2004,
Large Deformation Analysis of the Pantograph-Catenary Systems
,
Department of Mechanical and Industrial Engineering, University of Illinois
,
Chicago
.
13.
Vera
,
C.
,
Suarez
,
B.
,
Paulin
,
J.
, and
Rodríguez
,
P.
, 2006, “
Simulation Model for the Study of Overhead Rail Current Collector Systems Dynamics, Focused on the Design of a New Conductor Rail
,”
Veh. Syst. Dyn.
,
44
(
8
), pp.
595
614
.
14.
Zhang
,
W.
,
Mei
,
G.
,
Wu
,
X.
, and
Shen
,
Z.
, 2002, “
Hybrid Simulation of Dynamics for the Pantograph-Catenary System
,”
Veh. Syst. Dyn.
,
38
(
6
), pp.
393
414
.
15.
Moaveni
,
S.
, 2007,
Finite Element Analysis Theory and Application With Ansys
,
Prentice-Hall
,
Englewood-Cliffs, NJ
.
16.
Collina
,
A.
, and
Bruni
,
S.
, 2002, “
Numerical Simulation of Pantograph-Overhead Equipment Interaction
,”
Veh. Syst. Dyn.
,
38
(
4
), pp.
261
291
.
17.
Collina
,
A.
,
Melzi
,
S.
, and
Facchinetti
,
A.
, 2002, “
On the Prediction of Wear of Contact Wire in Ohe Lines: A Proposed Model
,”
Veh. Syst. Dyn.
,
37
(
S1
), pp.
579
592
.
18.
Bocciolone
,
M.
,
Resta
,
F.
,
Rocchi
,
D.
,
Tosi
,
A.
, and
Collina
,
A.
, 2006, “
Pantograph Aerodynamic Effects on the Pantograph-Catenary Interaction
,”
Veh. Syst. Dyn.
,
44
(
S1
), pp.
560
570
.
19.
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Rauter
,
F.
,
Collina
,
A.
, and
Facchinetti
,
A.
, 2009, “
Influence of the Aerodynamic Forces on the Pantograph-Catenary System for High Speed Trains
,”
Veh. Syst. Dyn.
,
47
(
11
), pp.
1327
1347
.
20.
Huang
,
Y.
, 2004, “
Discrete Fuzzy Variable Structure Control for Pantograph Position Control
,”
Electr. Eng.
,
86
, pp.
171
177
.
21.
Resta
,
F.
,
Collina
,
A.
, and
Fossati
,
F.
, 2001, “
Actively Controlled Pantograph: An Application
,”
Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, Como, Italy, 8–12 July,
IEEE
,
New York
, pp.
243
248
.
22.
Balestrino
,
A.
,
Bruno
,
O.
,
Landi
,
A.
, and
Sani
,
L.
, 2000, “
Innovative Solutions for Overhead Catenary-Pantograph System: Wire Actuated Control and Observed Contact Force
,”
Veh. Syst. Dyn.
,
33
(
2
), pp.
69
89
.
23.
Becker
,
K.
,
Konig
,
A.
,
Resch
,
U.
, and
Zweig
,
B.-W.
, 1995, “
Hochgeschwindigkeitsfahrleitung - Ein Thema Fur Die Forschung (The High-Speed Catenary - A Subject for Research)
,”
ETR - Eisen-Bahantechnische Rundschau
,
44
(
1–2
), pp.
64
72
.
24.
Reinbold
,
M.
, and
Deckart
,
U.
, 1996, “
Famos - Ein Programm Zur Simulation Von Oberleitungen Und Stromabnehmer (Famos - A Program for the Simulation of Catenaries and Pantographs)
,”
ZEV+DET Glases Annalen
,
120
(
6
), pp.
239
243
.
25.
Veitl
,
A.
, and
Arnold
,
M.
, 1999, “
Coupled Simulations of Multibody Systems and Elastic Structures
,”
Proceedings of EUROMECH Colloquium 404 Advances in Computational Multibody Dynamics
,
J.
Ambrósio
,
et al.
, eds., Lisbon, Portugal, pp.
635
644
.
26.
Fernandez
,
J.-A.
, and
Pastor
,
M.
, 1998,
Analisis Mediante Elementos Finites Del Acoplamiento Di-Namico Catenaria-Pantógrafo (Finite Element Analysis of the Dynamic Coupling Catenary-Pantograph)
,
Ministério de Fomento, Centro de Estudos y Experimentacion de Obras Públicas
,
Madrid, Spain
.
27.
Bobillot
,
A.
, and
Chalansonnet
,
J.
, 2008,
Europacas-Fe Software - Catenary Module Users’ Manual
,
SNCF - Société Nationale des Chemins de Fer Français
,
Paris, France
.
28.
Pombo
,
J.
, and
Ambrósio
,
J.
, 2008,
Europacas-Mb Software - Pantograph Module Users’ Manual
,
Instituto Superior Técnico, Technical University of Lisbon
,
Lisbon, Portugal
.
29.
Ambrósio
,
J.
,
Pombo
,
J.
,
Rauter
,
F.
, and
Pereira
,
M.
, 2008, “
A Memory Based Communication in the Co-Simulation of Multibody and Finite Element Codes for Pantograph-Catenary Interaction Simulation
,”
Multibody Dynamics
,
C. L.
Bottasso
, ed.,
Springer
,
Dordrecht, The Netherlands
.
30.
Chamorro
,
R.
,
Escalona
,
J.
, and
González
,
M.
, 2011, “
An Approach for Modeling Long Flexible Bodies With Application to Railroad Dynamics
,”
Multibody Syst. Dyn.
,
26
(
2
), pp.
135
152
.
31.
Lewis
,
R.
,
Dwyer-Joyce
,
R.
,
Olofsson
,
U.
,
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Ariaudo
,
C.
, and
Kuka
,
N.
, 2010, “
Mapping Railway Wheel Material Wear Mechanisms and Transitions
,”
Proc. Inst. Mech. Eng., F J. Rail Rapid Transit
,
224
(
3
), pp.
125
137
.
32.
Pombo
,
J.
, and
Ambrósio
,
J.
, 2011, “
Environmental and Track Perturbations on Multiple Pantograph Interactions With Catenaries in High-Speed Trains
,”
Proceedings of 13th International Conference on Civil, Structural and Environmental Engineering Computing (CC2011)
,
B.
Topping
, ed.,
Chania
,
Crete, Greece
.
33.
Pombo
,
J.
, and
Ambrósio
,
J.
, 2011, “
An Alternative Method to Include Track Irregularities in Railway Vehicle Dynamic Analyses
,”
Nonlinear Dyn.
,
68
(
1–2
), pp.
161
176
.
34.
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Lewis
,
R.
,
Dwyer-Joyce
,
R.
,
Ariaudo
,
C.
, and
Kuka
,
N.
, 2010, “
A Study on Wear Evaluation of Railway Wheels Based on Multibody Dynamics and Wear Computation
,”
Multibody Syst. Dyn.
,
24
(
3
), pp.
347
366
.
35.
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Lewis
,
R.
,
Dwyer-Joyce
,
R.
,
Ariaudo
,
C.
, and
Kuka
,
N.
, 2011, “
Development of a Wear Prediction Tool for Steel Railway Wheels Using Three Alternative Wear Functions
,”
Wear
,
271
, pp.
238
245
.
36.
Pombo
,
J.
,
Ambrósio
,
J.
,
Pereira
,
M.
,
Verardi
,
R.
,
Ariaudo
,
C.
, and
Kuka
,
N.
, 2011, “
Influence of Track Conditions and Wheel Wear State on the Loads Imposed on the Infrastructure by Railway Vehicles
,”
Comput. Struct.
,
89
, pp.
1882
1894
.
37.
Nikravesh
,
P. E.
, 1988,
Computer-Aided Analysis of Mechanical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
38.
Gear
,
C. W.
, 1971, “
Simultaneous Numerical Solution of Differential-Algebraic Equations
,”
IEEE Trans. Circuit Theory
,
18
(
1
), pp.
89
95
.
39.
Shampine
,
L.
, and
Gordon
,
M.
, 1975,
Computer Solution of Ordinary Differential Equations: The Initial Value Problem
,
Freeman
,
San Francisco, CA
.
40.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
, pp.
1
16
.
41.
Jalón
,
J.
, and
Bayo
,
E.
, 1994,
Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenges in Mechanical Systems Simulation
,
Springer-Verlag
,
New York
.
42.
Shabana
,
A. A.
, and
Sany
,
J. R.
, 2001, “
An Augmented Formulation for Mechanical Systems With Non-Generalized Coordinates: Application to Rigid Body Contact Problems
,”
Nonlinear Dyn.
,
24
(
2
), pp.
183
204
.
43.
Zienkiewicz
,
O.
, and
Taylor
,
R.
, 2000,
The Finite Element Method
,
Butterwort-Heinemann
,
Woburn, MA
.
44.
Newmark
,
N.
, 1959, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
EM 3
), pp.
67
94
.
45.
Hunt
,
K.
, and
Crossley
,
F.
, 1975, “
Coefficient of Restitution Interpreted as Damping in Vibroimpact
,”
J. Appl. Mech.
,
7
, pp.
440
445
.
46.
Lankarani
,
H. M.
, and
Nikravesh
,
P. E.
, 1990, “
A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems
,”
ASME J. Mech. Des.
,
112
, pp.
369
376
.
47.
Goldsmith
,
W.
, 1960,
Impact—The Theory and Physical Behaviour of Colliding Solids
,
Edward Arnold LTD
,
London
.
48.
Hulbert
,
G.
,
Ma
,
Z -D.
,
Wang
,
J.
, 2005, “
Gluing for Dynamic Simulation of Distributed Mechanical Systems
,”
Advances on Computational Multibody Systems
,
J.
Ambrósio
, ed.,
Springer
,
Dordrecht, The Netherlands
.
49.
Kubler
,
R.
, and
Schiehlen
,
W.
, 2000, “
Modular Simulation in Multibody System Dynamics
,”
Multibody Syst. Dyn.
,
4
, pp.
107
127
.
50.
Ambrósio
,
J.
,
Pombo
,
J.
,
Pereira
,
M.
,
Antunes
,
P.
and
Mósca
,
A.
, 2012, “
Recent Developments in Pantograph-Catenary Interaction Modelling and Analysis
,”
International Journal of Railway Technology
,
1
, No.
1
, pp.
249
278
.
51.
European Norm 50318
, 2002, “
Railway Applications—Current Collection Systems—Validation of Simulation of the Dynamic Interaction between Pantograph and Overhead Contact Line
”.
You do not currently have access to this content.