This paper presents the application of novel and reliable exact equivalent function (EF) for deadzone nonlinearity in an analytical investigation of nonlinear differential equations. A highly nonlinear equation of cantilever beam vibration with a deadzone nonlinear boundary condition is used to indicate the effectiveness of this EF. To obtain the analytical solution of dynamic behavior of the mentioned system, a powerful method, called He’s parameter expanding method (HPEM) is used. Comparison of the obtained solutions using a numerical method reveals the accuracy of this analytical EF.

References

References
1.
Bhashyam
,
G. R.
, and
Prathap
,
G.
, 1980, “
Galerkin Finite Element Method for Nonlinear Beam Vibrations
,”
J. Sound Vib.
,
72
, pp.
91
203
.
2.
Fadel
,
L. F. M.
,
Fadel
,
L. F. M.
, and
Kern
,
C. A. T.
, 2009, “
Theoretical and Experimental Modal Analysis of a Cantilever Steel Beam With a Tip Mass
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
, pp.
1535
1541
.
3.
Pielorz
,
A.
, 2004, “
Nonlinear Equations for a Thin Beam
,”
Acta Mech.
,
167
, pp.
1
12
.
4.
Li
,
W. L.
, and
Xu
,
H.
, 2009, “
An Exact Fourier Series Method for the Vibration Analysis of Multispan Beam Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
,
021001
.
5.
Barari
,
A.
,
Kaliji
,
H. D.
,
Ghadami
,
M.
, and
Domairry
,
G.
, 2011, “
Non-Linear Vibration of Euler-Bernoulli Beams
,”
Lat. Am. J. Solids Struct.
,
8
, pp.
139
148
.
6.
Kovarova
,
J.
,
Schlegel
,
M.
, and
Dupal
,
J.
, 2007, “
Vibration Control of Cantilever Beam
,”
J. Vibroeng.
,
9
, pp.
45
48
.
7.
Bayat
,
M.
,
Pakar
,
I.
, and
Bayat
,
M.
, 2011, “
Analytical Study on the Vibration Frequencies of Tapered Beams
,”
Lat. Am. J. Solids Struct.
,
8
, pp.
149
162
.
8.
Li
,
J.
, and
Hua
,
H.
, 2010, “
The Effects of Shear Deformation on the Free Vibration of Elastic Beams With General Boundary Conditions
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
224
, pp.
71
84
.
9.
Marcio
,
H.
, and
Leandro
,
R.
, 2008, “
Statistical Analysis of the LMS Adaptive Algorithm Subjected to Symmetric Dead-Zone Nonlinearity at the Adaptive Filter Output
,”
Signal Process.
,
88
, pp.
1485
1495
.
10.
Chengwu
,
D.
, and
Rajendra
,
S.
, 2007, “
Dynamic Analysis of Preload Nonlinearity in a Mechanical Oscillator
,”
J. Sound Vib.
,
301
, pp.
963
978
.
11.
Hakimi
,
H.
, and
Moradi
,
S.
, 2010, “
Drillstring Vibration Analysis Using Differential Quadrature Method
,”
J. Pet. Sci. Eng.
,
70
, pp.
235
242
.
12.
Nayfeh
,
A. H.
, 1995,
Problems in Perturbation
,
John Wiley & Sons
,
New York
.
13.
Louand
,
C. L.
, and
Sikarskie
,
D. L.
, 1975, “
Nonlinear Vibration of Beams Using a Form-Function Approximation
,”
ASME J. Appl. Mech.
,
42
, pp.
209
214
.
14.
Lyapunov
,
A. M.
, 1992,
General Problem on Stability of Motion
,
Taylor & Francis
,
London
.
15.
Ghadimi
,
M.
,
Kaliji
,
H. D.
, and
Barari
,
A.
, 2011, “
Analytical Solutions to Nonlinear Mechanical Oscillation Problems
,”
J. Vibroeng.
,
13
, pp.
133
144
.
16.
Michon
,
G.
,
Manin
,
L.
,
Parker
,
R. G.
, and
Dufour
,
R.
, 2008, “
Duffing Oscillator With Parametric Excitation: Analytical and Experimental Investigation on a Belt-Pulley System
,”
ASME J. Comput. Nonlinear Dyn.
,
3
,
031001
.
17.
Ozis
,
T.
, and
Yildirim
,
A.
, 2007, “
Study of Nonlinear Oscillators With u1/3 Force by He’s Variational Iteration Method
,”
J. Sound Vib.
,
306
, pp.
372
376
.
18.
Liao
,
S. J.
, 2004,
Beyond Perturbation-Introduction to the Homotopy Analysis Method
,
Chapman & Hall
,
London
.
19.
Sedighi
,
H. M.
, and
Shirazi
,
K. H.
, 2011, “
Using Homotopy Analysis Method to Determine Profile for Disk Cam by Means of Optimization of Dissipated Energy
,”
Int. Rev. Mech. Eng. (IREME)
,
5
, pp.
941
946
.
20.
Cveticanin
,
L.
, 2005, “
The Homotopy-Perturbation Method Applied for Solving Complex Valued Differential Equations With Strong Cubic Nonlinearity
,”
J. Sound Vib.
,
285
, pp.
1171
1179
.
21.
He
,
J.
, 2008, “
Recent Development of the Homotopy Perturbation Method
,”
Topol. Methods Nonlinear Anal.
,
31
, pp.
205
209
.
22.
Sedighi
,
H. M.
,
Shirazi
,
K. H.
,
Reza
,
A.
, and
Zare
,
J.
, 2012, “
Accurate Modeling of Preload Discontinuity in the Analytical Approach of the Nonlinear Free Vibration of Beams
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
, in press.
23.
Sedighi
,
H. M.
,
Reza
,
A.
, and
Zare
,
J.
, 2011, “
Dynamic Analysis of Preload Nonlinearity in Nonlinear Beam Vibration
,”
J. Vibroeng.
,
13
, pp.
778
787
.
24.
Malatkar
,
P.
, 2003, “
Nonlinear Vibrations of Cantilever Beams and Plates
,” Ph.D. thesis, Mechanical Department, Virginia Polytechnic Institute and State University, Blacksburg, VA.
You do not currently have access to this content.