There is a missing link in analytical mechanics which shows that general impactive processes are obtained by extremizing some sort of action integral for which momentum and energy are not necessarily conserved. In this work, the conditions under which general nonconserving impacts become a part of an extremizing solution for mechanical systems, which are scleronomic (not explicitly time depending) and holonomic, are investigated. The stationarity conditions of an impulsive action integral are investigated and the main theorem is proven. The general momentum balance and the total energy change over a collisional impact for a mechanical scleronomic holonomic finite-dimensional Lagrangian system are obtained in the form of stationarity conditions of a modified action integral under a regularity condition on the impactive transition sets.

References

References
1.
Painlevé
,
P.
, 1905, “
Sur les lois du frottement de glissement
,”
C. R. Acad. Sci. Paris
,
121
, pp.
112
115
.
2.
Brogliato
,
B.
, 1999,
Nonsmooth Mechanics: Models, Dynamics and Control, (Communications and Control Engineering)
,
2nd ed.
,
Springer
,
New York
.
3.
Glocker
,
C.
, 2001,
Set-Valued Force Laws–Dynamics of Nonsmooth Systems, (Lecture Notes in Applied Mechanics)
,
Springer
,
New York
, Vol.
1
.
4.
Erdmann
,
G.
, 1875, “
Über die unstetigen lösungen in der variationsrechnung
,”
J. Reine Angew. Math
,
82
, pp.
21
30
.
5.
Cesari
,
M. O.
, 1984, “
Necessary Conditions and Sufficient Conditions of Weak Minimum for Solutions With Corner Points
,”
Bol. Soc. Bras. Mat.
,
15
(
1-2
), pp.
109
135
.
6.
Bahar
,
L. Y.
, and
Anton
,
H.
, 1972, “
On the Applications of Distribution Theory to Variational Problems
,”
J. Franklin Inst.
,
293
(
3
), pp.
215
223
.
7.
Clarke
,
F. H.
, 1980, “
The Erdmann Condition and Hamiltonian Inclusions in Optimal Control and the calculus of variations
”.
Can. J. Math.
,
32
(
2
), pp.
494
509
.
8.
Bayón
,
L.
,
Grau
,
M.
, and
Suarez
,
P.
, 2003. “
A necessary condition for broken extremals in Problems Involving Inequality Constraints
,”
Arch. Inequal. Appl.
,
1
, pp.
1
10
.
9.
Ioffe
,
A. D.
, and
Rockafellar
,
T.
, 1996, “
The Euler and Weierstrass Conditions for Nonsmooth Variational Problems
,”
Calculus Var. Partial Differ. Equ.
,
4
, pp.
59
87
.
10.
Brogliato
,
B.
, 2009, “
Some Results on Optimal Control With Unilateral State Constraints
,”
Nonlinear Anal. Theory Methods Appl.
,
70
, pp.
3626
3657
.
11.
Leine
,
R. I.
,
Aeberhard
,
U.
, and
Glocker
,
C.
, 2009, “
Hamilton’s Principle as Variational Inequality for Mechanical Systems With Impact
,”
J. Nonlinear Sci.
,
19
, pp.
633
664
.
12.
Yunt
,
K.
, 2010, “
Internal Boundary Variations and Discontinuous Transversality Conditions in Mechanics
,”
Integral Methods in Science and Engineering
,
C.
Constanda
and
M.
Pérez
, eds.,
Birkhäuser
Boston
, Vol.
1
, pp.
323
332
.
13.
Yunt
,
K.
, 2008, “
Impulsive Optimal Control of Hybrid Finite-Dimensional Lagrangian Systems
,” Ph.D. thesis, Swiss Federal Institute of Technology (ETH), Zurich, CH.
14.
Yunt
,
K.
, 2007, “
Impulsive Time-Optimal Control of Structure-Variant Rigid-Body Mechanical Systems
,”
3rd International IEEE Scientific Conference on Physics and Control (Physcon 2007)
, IPACS.
15.
Yunt
,
K.
, 2008, “
Necessary Conditions for the Impulsive Time-Optimal Control of Finite-Dimensional Lagrangian Systems
,”
Hybrid Systems: Computation and Control (Lecture Notes in Computer Science)
,
M.
Egerstedt
and
B.
Mishra
, eds.,
Springer
,
Berlin/Heidelberg
, Vol.
4981
, pp.
556
569
.
16.
Yunt
,
K.
, 2011, “
The Impulsive Action Integral
,”
Seventh WSEAS Conference on Applied and Theoretical Mechanics
, WSEAS, Montreux., pp.
98
103
.
17.
Fetecau
,
R. C.
,
Marsden
,
J. E.
,
Ortiz
,
M.
, and
West
,
M.
, 2003, “
Nonsmooth Lagrangian Mechanics and Variational Collision Integrators
,”
SIAM J. Appl. Dyn. Syst.
,
2
(
3
), pp.
381
416
.
18.
Sinitsyn
,
V. A.
, 1981, “
On the Hamilton-Ostrogradskii Principle in the Case of Impulsive Motions of Dynamic Systems
,”
Prikl. Mat. Mekh.
,
45
(
3
), pp.
488
493
.
19.
May
,
H. O.
, 1984, “
Generalized Variational Principles and Nondifferentiable Potentials in Analytical Mechanics
,”
J. Math. Phys.
,
25
(
3
), pp.
491
493
.
20.
May
,
H. O.
, 1984, “
Hamilton’s Principle as Substationarity Principle
,”
Acta Mech.
,
52
(
3-4
), pp.
177
187
.
21.
Panagiotopoulos
,
P.
, and
Glocker
,
C.
, 1998, “
Analytical Mechanics: Addendum I. Inequality Constraints With Elastic Impacts. The Convex Case
,”
Z. Angew. Math. Mech.
,
78
(
4
), pp.
219
229
.
22.
Panagiotopoulos
,
P.
, and
Glocker
,
C.
, 2000, “
Inequality Constraints With Elastic Impacts in Deformable Bodies. The Convex Case
,”
Arch. Appl. Mech.
,
70
, pp.
349
365
.
23.
Kozlov
,
V. V.
, and
Treshchev
,
D. V.
, 1991,
Billiards. A Genetic Introduction to the Dynamics of Systems With Impacts
,
American Mathematical Society
,
Providence
.
24.
Buttazzo
,
G.
, and
Percivale
,
D.
, 1983, “
On the Approximation of the Elastic Bounce Problem on Riemannian Manifolds
,”
J. Differ. Equations
,
47
, pp.
227
275
.
25.
Ballard
,
P.
, 2000, “
The Dynamics of Discrete Mechanical Systems With Perfect Unilateral Constraints
,”
Arch Ration. Mech. Anal.
,
154
, pp.
199
274
.
26.
Paoli
,
L.
, and
Schatzman
,
M.
, 2002, “
A Numerical Scheme for Impact Problems I: The One Dimensional Case
,”
SIAM Journal of Numerical Analysis
,
40
(
2
), pp.
702
733
.
27.
Paoli
,
L.
, and
Schatzman
,
M.
, 2002, “
A Numerical Scheme for Impact Problems II: The Multidimensional Case
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
40
(
2
), pp.
734
768
.
28.
Mabrouk
,
M.
, 1998, “
A Unified Variational for the Dynamics of Perfect Unilateral Constraints
,”
Eur. J. Mech. A/Solids
,
17
, pp.
819
842
.
29.
Dzonou
,
R.
, and
Monteiro Marques
,
M.
, 2007, “
A Sweeping Process Approach to Inelastic Contact Problems With General Inertia Operators
,”
Eur. J. Mech. A/Solids
,
26
(
3
), pp.
474
490
.
30.
Monteiro Marques
,
M.
, 1993, “
Differential Inclusions in Nonsmooth Mechanical Problems, Schocks and Dry Friction
,”
Progress in Nonlinear Differential Equations and Their Applications
,
Birkhäuser
,
Basel.
, Vol.
9
.
31.
Hartman
,
P.
, and
Stampacchia
,
G.
, 1966, “
On Some Nonlinear Elliptic Differential Equations
,”
Acta Math.
,
115
(
1
), pp.
153
188
.
32.
Clarke
,
F.
, 1990,
Optimization and Nonsmooth Analysis, (Classics in Applied Mathematics)
,
SIAM
,
Philadelphia
.
33.
Moreau
,
J. J.
, 1988, “
Bounded Variation in Time
,”
Topics in Nonsmooth Mechanics
,
J. J.
,
Moreau
,
P. D.
,
Panagiotopoulos
, and
G.
Strang
, eds.,
Birkhäuser
,
Basel-Boston.
, pp.
1
74
.
34.
Moreau
,
J. J.
, 1988, “
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
,”
Nonsmooth Mechanics and Applications (CISM Courses and Lectures)
,
J. J.
Moreau
and
P. D.
Panagiotopoulos
, eds.
Springer
,
New York
, Vol.
302
, pp.
1
82
.
35.
Troutman
,
J. L.
, 1996,
Variational Calculus and Optimal Control
,
2nd ed.
,
Springer
,
New York
.
36.
Aubin
,
J.-P.
, and
Frankowska
,
H.
, 1990,
Set-Valued Analysis (Systems and Control: Foundations and Applications)
,
Birkhäuser
,
Boston.
, Vol.
2
.
37.
Rockafellar
,
R. T.
, 1970,
Convex Analysis (Princeton Landmarks in Mathematics and Physics)
Princeton University Press
,
Princeton, NJ
.
38.
Mordukhovich
,
B. S.
, 2006,
Variational Analysis and Generalized Differentiation I
,
Springer
,
New York
.
39.
Rockafellar
,
R. T.
, 1979, “
Directionally Lipschitzian Functions and Subdifferential Calculus
,”
Proc. London Math. Soc.
,
3
(
39
), pp.
331
355
.
40.
Rockafellar
,
R. T.
, 1980, “
Generalized Directional Derivatives and Subgradients of Nonconvex Functions
,”
Can. J. Math.
,
2
, pp.
257
280
.
41.
Rockafellar
,
R. T.
, 1985, “
Extensions of Subgradient Calculus With Applications to Optimisation
,”
Nonlinear Anal. Theory, Methods Appl.
,
9
(
7
), pp.
665
698
.
42.
Rockafellar
,
R. T.
, and
Wets
,
R. J.-B.
, 2004,
Variational Analysis
,
Springer
,
New York
.
43.
Thompson
,
W.
, and
Tait
,
P. G.
, 1903,
Treatise on Natural Philosophy
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.