This work describes the modeling, analysis, predictive design, and control of self-excited oscillators, and associated arrays, founded upon electromagnetically-actuated microbeams. The study specifically focuses on the characterization of nonlinear behaviors arising in isolated oscillators and small arrays of nearly-identical, mutually-coupled oscillators. The work provides a framework for the exploration of larger oscillator arrays with different forms of coupling and feedback, which can be exploited in practical applications ranging from signal processing to micromechanical neurocomputing.

References

References
1.
Aubin
,
K.
,
Zalalutdinov
,
M.
,
Alan
,
T.
,
Reichenbach
,
R. B.,
Rand
,
R.
,
Zehnder
,
A.
,
Parpia
,
J.
, and
Craighead
,
H.
, 2004, “
Limit Cycle Oscillations in CW Laser-Driven NEMS
,”
J. Microelectromech. Syst.
,
13
(
6
), pp.
1018
1026
.
2.
Zalalutdinov
,
M.
,
Aubin
,
K. L.
,
Pandey
,
M.
,
Zehnder
,
A. T.
,
Rand
,
R. H.
,
Craighead
,
H. G.
,
Parpia
,
J. M.
, and
Houston
,
B. H.
, 2003, “
Frequency Entrainment for Micromechanical Oscillator
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3281
3283
.
3.
Salvia
,
J. C.
,
Melamud
,
R.
,
Chandorkar
,
S. A.
,
Lord
,
S. F.
, and
Kenny
,
T.W.
, 2010, “
Real-Time Temperature Compensation of MEMS Oscillators Using an Integrated Micro-Oven and a Phase-Locked Loop
,”
J. Microelectromech. Syst.
,
19
(
1
), pp.
192
201
.
4.
Nguyen
,
C. T.-C.
, 2007, “
MEMS Technology for Timing and Frequency Control
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
54
(
2
), pp.
251
270
.
5.
Pikovsky
,
A.
,
Rosenblum
,
M.
, and
Kurths
,
J.
, 2001,
Synchronization: A Universal Concept in Nonlinear Sciences
,
Cambridge University Press
,
Cambridge, England
.
6.
Cross
,
M. C.
,
Rogers
,
J. L.
,
Lifshitz
,
R.
, and
Zumdieck
,
A.
, 2006, “
Synchronization by Reactive Coupling and Nonlinear Frequency Pulling
,”
Phys. Rev. E
,
73
(
3
), p.
036205
.
7.
Mendelowitz
,
L.
,
Verdugo
,
A.
, and
Rand
,
R.
, 2009, “
Dynamics of Three Coupled Limit Cycle Oscillators With Application to Artificial Intelligence
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
1
), pp.
270
283
.
8.
Aronson
,
D. G.
,
Ermentrout
,
G. B.
, and
Kopell
,
N.
, 1990, “
Amplitude Response of Coupled Oscillators
,”
Physica D
,
41
(
3
), pp.
403
449
.
9.
Ivanchenko
,
M. V.
,
Osipov
,
G. V.
,
Shalfeev
,
V. D.
, and
Kurths
,
J.
, 2004, “
Synchronization of Two Non-Scalar-Coupled Limit-Cycle Oscillators
,”
Physica D
,
189
(
1–2
), pp.
8
30
.
10.
Kuznetsov
,
A. P.
and
Roman
,
J. P.
, 2009, “
Properties of Synchronization in the Systems of Non-Identical Coupled van der Pol and van der Pol-Duffing Oscillators: Broadband Synchronization
,”
Physica D
,
238
(
16
), pp.
1499
1506
.
11.
Ha
,
S. Y.
,
Ha
,
T.
, and
Kim
,
J. H.
, 2010, “
On the Complete Synchronization of the Kuramoto Phase Model
,”
Physica D
,
239
(
17
), pp.
1692
1700
.
12.
Acebron
,
J. A.
,
Bonilla
,
L. L.
,
Perez Vicente
,
C. J.
,
Ritort
,
F.
, and
Spigler
,
R.
, 2005, “
The Kuramoto Model: A Simple Paradigm for Synchronization Phenomena
,”
Rev. Mod. Phys.
,
77
(
1
), pp.
137
185
.
13.
Pandey
,
M.
,
Rand
,
R.
, and
Zehnder
,
A.
, 2007, “
Perturbation Analysis of Entrainment in a Micromechanical Limit Cycle Oscillator
,”
Commun. Nonlinear Sci. Numer.l Simul.
,
12
(
7
), pp.
1291
1301
.
14.
Strogatz
,
S. H.
, 2000, “
From Kuramoto to Crawford: Exploring the Onset of Synchronization in Populations of Coupled Oscillators
,”
Physica D
,
143
(
1–4
), pp.
1
20
.
15.
Liao
,
P.
and
York
,
R. A.
, 1993, “
A New Phase-Shifterless Beam-Scanning Technique Using Arrays of Coupled Oscillators
,”
IEEE Trans. Microw. Theory Tech.
,
41
(
10
), pp.
1810
1815
.
16.
August
,
E.
and
Barahona
,
M.
, 2011, “
Obtaining Certificates for Complete Synchronisation of Coupled Oscillators
,”
Physica D
,
240
(
8
), pp.
795
803
.
17.
Hoppensteadt
,
F.
C.
and
Izhikevich
,
E. M.
, 2001, “
Synchronization of MEMS Resonators and Mechanical Neurocomputing
,”
IEEE Trans. Circuits Syst, I: Fundam. Theory Appl.
,
48
(
2
), pp.
133
138
.
18.
Chang
,
H.-C.
,
Cao
,
X.
,
Mishra
,
U. K.
, and
York
,
R. A.
, 1997, “
Phase Noise in Coupled Oscillators: Theory and Experiment
,”
IEEE Trans. Microw. Theory Tech.
,
45
(
5
), pp.
604
615
.
19.
Meirovitch
,
L.
, 1970,
Methods of Analytical Dynamics
,
McGraw-Hill
,
New York
.
20.
Baillieul
,
J.
and
Levi
M.
, 1991, “
Constrained Relative Motions in Rotational Mechanics
,”
Arch. Ration. Mech. Anal.
,
115
(
2
), pp.
101
135
.
21.
Crespo Da Silva
,
M. R. M.
, 1978, “
Flexural-Flexural Oscillations of Becks’s Column Subjected to a Planar Harmonic Excitation
,”
J. Sound Vib.
,
60
(
1
), pp.
133
144
.
22.
Nayfeh
,
A. H.
and
Mook
,
D. T.
, 1995,
Nonlinear Oscillations.
Wiley-Interscience
,
New York
.
23.
Jackson
,
J. D.
, 1962,
Classical Electrodynamics
,
John Wiley & Sons
,
New York
.
24.
Matveyey
,
A.
, 1966,
Principles of Electrodynamics
,
Reinhold
,
New York
.
25.
Sanders
,
J. A.
,
Verhulst
,
F.
, and
Murdock
,
J.
, 2007,
Averaging Methods in Nonlinear Dynamical Systems.
Springer
,
New York
.
26.
Adler
,
R.
, 1973, “
A Study of Locking Phenomena in Oscillators
,”
Proc. IEEE
,
61
(
10
), pp.
1380
1385
.
27.
Coddington
,
E.
A.
and
Levison
,
N.
, 1955,
Theory of Ordinary Differential Equations
,
McGraw-Hill
,
New York
.
28.
Kumar
,
V.
,
Boley
,
J. W.
,
Yang
,
Y.
,
Ekowaluyo
,
H.
,
Miller
,
J. K.
,
Chiu
,
G. T. -C. T.-C.
, and
Rhoads
,
J. F.
, 2011, “
Bifurcation-Based Mass Sensing Using Piezoelectrically-Actuated Microcantilevers
,”
Appl. Phys. Lett.
,
98
(
15
), p.
153510
.
29.
Sabater
,
A.
B.
and
Rhoads
,
J. F.
, 2011, “
On the Dynamics of Two Mutually-Coupled, Electromagnetically-Actuated Microbeam Oscillators
,”
Proceedings of the 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
, Paper No. DETC2011-47968.
You do not currently have access to this content.