In this paper, the analysis of delay differential equations with periodic coefficients and discontinuous distributed delay is carried out through discretization by the Chebyshev spectral continuous time approximation (ChSCTA). These features are introduced in the delayed Mathieu equation with discontinuous distributed delay which is used as an illustrative example. The efficiency of stability analysis is improved by using shifted Chebyshev polynomials for computing the monodromy matrix, as well as the adaptive meshing of the parameter plane. An idea for a method for numerical integration of periodic DDEs with discontinuous distributed delay based on existing MATLAB functions is proposed.

References

References
1.
Butcher
,
E. A.
,
Bobrenkov
,
O. A.
,
Bueler
,
E.
, and
Nindujarla
,
P.
, 2009, “
Analysis of Milling Stability by the Chebyshev Collocation Method: Algorithm and Optimal Stable Immersion Levels
,”
J. Comput. Nonlin. Dyn.
,
4
(
3
), pp.
1
12
.
2.
Bobrenkov
,
O.
,
Khasawneh
,
F.
,
Butcher
,
E.
, and
Mann
,
B.
, 2010, “
Analysis of Milling Dynamics for Simultaneously Engaged Cutting Teeth
,”
J. Sound Vib.
,
329
(
5
), pp.
585
606
.
3.
Khasawneh
,
F.
,
Mann
,
B.
,
Insperger
,
T.
, and
Stépán
,
G.
, 2009, “
Increased Stability of Low-Speed Turning Through a Distributed Force and Continuous Delay Model
,”
J. Comput. Nonlin. Dyn.
,
4
(
4
), pp.
1
12
.
4.
Long
,
X.
, and
Balachandran
,
B.
, 2004, “
Stability Analysis for Milling
,”
Nonlin. Dyn.
,
49
(
3
), pp.
249
259
.
5.
Takács
,
D.
,
Orosz
,
G.
, and
Stépán
,
G.
, 2009, “
Delay Effects in Shimmy Dynamics of Wheels With Stretched String-Like Tires
,”
Eur. J. Mech. A Solids
,
28
(
3
), pp.
516
525
.
6.
Stépán
,
G.
, 2009, “
Delay Effects in the Human Sensory System During Balancing
,”
Philos. Trans. R. Soc.
,
367
(
3
), pp.
1195
1212
.
7.
Abate
,
A.
,
Chen
,
M.
, and
Sastry
,
S.
, 2005, “
New Congestion Control Schemes Over Wireless Networks: Delay Sensitivity Analysis and Simulations
,”
Proceedings of the 16th IFAC World Congress
, pp.
1
6
.
8.
Waibel
,
A.
,
Hanazawa
,
T.
,
Hinton
,
G.
,
Shikano
,
K.
, and
Lang
,
K.
, 1989, “
Phoneme Recognition Using Time Delay Neural Networks
,”
IEEE Trans. Acoust. Speech Signal Process.
,
37
(
3
), pp.
328
339
.
9.
Bunner
,
M.
,
Kittel
,
A.
,
Parisi
,
J.
,
Fischer
,
I.
, and
Elsaber
,
W.
, 1998, “
Estimation of Delay Times From a Delayed Optical Feedback Laser Experiment
,”
Europhys. Lett.
,
42
(
4
), pp.
353
358
.
10.
Kuang
,
Y.
, 1993,
Delay Differential Equations: With Applications in Population Dynamics
,
Academic
,
New York
.
11.
Newbury
,
G.
, 2007, “
A Numerical Study of a Delay Differential Equation Model for Breast Cancer
,” Master’s thesis, Virginia Polytechnic Institute and State University.
12.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
, 2006, “
Numerical Computation of Characteristic Multipliers for Linear Time-Periodic Delay Differential Equations
,”
Proceedings of the 6th IFAC Workshop on Linear Time-Delay Systems
.
13.
Bueler
,
E.
, 2007, “
Error Bounds for Approximate Eigenvalues of Periodic-Coefficient Linear Delay Differential Equations
,”
SIAM J. Numer. Anal.
,
45
(
6
), pp.
2510
2536
.
14.
Butcher
,
E.
,
Ma
,
H.
,
Bueler
,
E.
,
Averina
,
V.
, and
Szabo
,
Z.
, 2004, “
Stability of Linear Time-Periodic Delay-Differential Equations Via Chebyshev Polynomials
,”
Int. J. Numer. Methods Eng.
,
59
, pp.
895
922
.
15.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davis
,
M. A.
, 2003, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
J. Manuf. Sci. Eng.
,
125
(
2
), pp.
220
225
.
16.
Insperger
,
T.
, and
Stépán
,
G.
, 2002, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
.
17.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Updated Semi-Discretization Method for Periodic DDEs With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
, pp.
117
141
.
18.
Insperger
,
T.
, and
Stépán
,
G.
, 2011, “
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
,” in
Introducing Delay in Linear Time-Periodic Systems
,
S. S.
Antman
,
P.
Holmes
,
L.
Sirovich
, and
K.
Sreenivasan
, Eds., Vol.
178
of Applied Mathematical Sciences,
Springer
,
New York
.
19.
Khasawneh
,
F.
,
Mann
,
B.
, and
Butcher
,
E.
, 2010, “
Comparison Between Collocation Methods and Spectral Element Approach for the Stability of Periodic Delay Systems
,”
Proceedings of 9th IFAC Workshop on Time Delay Systems TDS2010
, June 7–9.
20.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
, 2004, “
Computing the Characteristic Roots for Delay Differential Equations
,”
IMA J. Numer. Anal.
,
24
(
1
), pp.
1
19
.
21.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
, 2005, “
Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations
,”
SIAM J. Sci. Comput.
,
27
(
2
), pp.
482
495
.
22.
Breda
,
D.
, 2006, “
Solution Operator Approximations for Characteristic Roots of Delay Differential Equations
,”
Appl. Numer. Math.
,
56
(
3–4
), pp.
305
317
.
23.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
, 2006, “
Pseudospectral Approximation of Eigenvalues of Derivative Operators With Non-Local Boundary Conditions
,”
Appl. Numer. Math.
,
56
(
3–4
), pp.
318
331
.
24.
Wu
,
Z.
, and
Michiels
,
W.
, 2010, “
Improved Computation of Characteristic Roots of Delay Differential Equation by Pseudospectral Differencing Method
,”
Proceedings of International Congress on Computational and Applied Mathematics
.
25.
Gumussoy
,
S.
, and
Michiels
,
W.
, 2010, “
A Predictor-Corrector Type Algorithm for the Pseudospectral Abscissa Computation of Time-Delay Systems
,”
Automatica (Journal of IFAC)
46
(
4
), pp.
657
664
.
26.
Butcher
,
E.
, and
Bobrenkov
,
O.
, 2011, “
On the Chebyshev Spectral Continuous Time Approximation for Constant and Periodic Delay Differential Equations
,”
Commun. Nonlin. Sci. Numer. Simul.
,
16
(
3
), pp.
1541
1554
.
27.
Bobrenkov
,
O.
,
Butcher
,
E.
, and
Mann
,
B.
, 2012, “
Application of the Liapunov-Floquet Transformation to Differential Equations With Time Delay and Periodic Coefficients
,” J. Vib. Control, doi:
28.
Wahi
,
P.
, and
Chatterjee
,
A.
, 2005, “
Galerkin Projections for Delay Differential Equations
,”
J. Dyn. Syst. Meas. Control
,
127
, pp.
80
87
.
29.
Stépán
,
G.
, 1989,
Retarded Dynamical Systems: Stability and Characteristic Functions
,
John Wiley
,
New York
.
30.
Xie
,
L.
,
Fridman
,
E.
, and
Shaked
,
U.
, 2001, “
Robust H∞ Control of Distributed Delay Systems With Application to Combustion Control
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
1930
1935
.
31.
Zhong
,
Q.
, 2004, “
Implementation of Distributed Delay in Control Laws
,”
IEEE Trans. Autom. Control
,
49
(
11
), pp.
2074
2080
.
32.
Assche
,
V. V.
,
Dambrine
,
M.
,
Lafay
,
J.-F.
, and
Richard
,
J.-P.
, 1999, “
Some Problems Arising in the Implementation of Distributed-Delay Control Laws
,”
Proceedings of the 38th Conference on Decision and Control
, pp.
4668
4672
.
33.
Michiels
,
W.
,
Morarescu
,
C.-I.
, and
Niculescu
,
S.-I.
, 2003, “
Consensus Problems With Distributed Delays, With Application to Traffic Flow Models
,”
SIAM J. Control Optimization
,
48
(
1
), pp.
77
101
.
34.
Wang
,
K.
,
Teng
,
Z.
, and
Jiang
,
H.
, 2008, “
Adaptive Synchronization of Neural Networks With Time-Varying Delay and Distributed Delay
,”
Phys. A
,
387
(
2–3
), pp.
631
642
.
35.
Wolkowicz
,
G.
,
Xia
,
H.
, and
Ruan
,
S.
, 1997, “
Competition in the Chemostat: A Distributed Delay Model and Its Global Asymptotic Behavior
,”
SIAM J. Appl. Math.
,
57
(
5
), pp.
1281
1310
.
36.
He
,
W.
, and
Cao
,
J.
, 2008, “
Robust Stability of Genetic Regulatory Networks With Distributed Delay
,”
Cognitive Neurodyn.
,
2
(
4
), pp.
355
361
.
37.
Sims
,
N.
,
Mann
,
B.
, and
Huyanan
,
S.
, 2008, “
Analytical Prediction of Chatter Stability for Variable Pitch and Variable Helix Milling Tools
,”
J. Sound Vib.
,
317
(
3–5
), pp.
664
686
.
38.
Khasawneh
,
F.
,
Mann
,
B.
, and
Butcher
,
E.
, 2011, “
A Multi-Interval Chebyshev Collocation Approach for the Stability of Periodic Delayed Systems With Discontinuities
,”
Commun. Nonlin. Sci. Numer. Simul.
,
16
, pp.
4408
4421
.
39.
Fox
,
L.
, and
Parker
,
I. B.
, 1968,
Chebyshev Polynomials in Numerical Analysis
,
Oxford University Press
,
London
.
40.
Trefethen
,
L. N.
, 2000,
Spectral Methods in MATLAB
,
SIAM Press
,
Philadelphia, PA
.
41.
Sinha
,
S. C.
,
Wu
,
D.-H.
,
Juneja
,
V.
, and
Joseph
,
P.
, 1993, “
Analysis of Dynamic Systems With Periodically Varying Parameters Via Chebyshev Polynomials
,”
J. Vib. Acoust.
,
115
, pp.
96
102
.
42.
Insperger
,
T.
, and
Stépán
,
G.
, 2002, “
Stability Chart for the Delayed Mathieu Equation
,”
Proc. R. Soc. Math. Phys. Eng. Sci.
,
458
, pp.
1989
1998
.
You do not currently have access to this content.