Recent military conflicts in Iraq and Afghanistan have resulted in an increase in the number of blast related traumatic brain injuries (blast-TBI). It is assumed that the primary mechanism for blast-TBI is the interaction between the blast pressure wave and the central nervous system, but the details of this mechanism are poorly understood. The conditions of such blast injuries are highly variable, and the presence or absence of protective devices such as vehicles or helmets is presumed to have a strong influence on pressure waves. Because of the complexity of this problem and the difficulty of in situ measurement of these effects in actual combat scenarios, one approach is to develop efficient numerical simulations that have the fidelity to reliably model the interaction of the brain and the pressure and shear waves. Here we examine the distribution of pressures and principal strains (stretches) in a brain impinged upon by a blast wave incident from orthogonal directions as simulated by a finite element coupled fluid-solid dynamic interaction framework. We assess the various sources of errors in finite element simulations of wave propagating through tissue, the modeling error, the discretization error, and the error of input parameters (data uncertainty). We conclude that the least important source of error is the assumption of linear kinematics and linear constitutive equation. The discretization error is significant, and controlling it will remain a challenge. The most significant source of error is found to be the input parameter uncertainty (experimental variability) and lack of knowledge of the detailed mechanics of deformation of the brain tissues under conditions of blast loading.

References

References
1.
Warden
,
D.
, 2006, “
Military Tbi During the Iraq and Afghanistan Wars
,”
J. Head Trauma Rehabil.
,
21
(
5
), pp.
398
402
.
2.
Hoge
,
C. W.
,
Mcgurk
,
D.
,
Thomas
,
J. L.
,
Cox
,
A. L.
,
Engel
,
C. C.
, and
Castro
,
C. A.
, 2008, “
Mild Traumatic Brain Injury in U. S. Soldiers Returning From Iraq.
,”
N. Engl. J. Med.
,
358
, pp.
453
463
.
3.
Hicks
,
R. R.
,
Fertig
,
S. J.
,
Desrocher
,
R. E.
,
Koroshetz
,
W. J.
, and
Pancrazio
,
J. J. P.
, 2010, “
Neurological Effects of Blast Injury
,”
J. Trauma: Inj., Infect., Crit. Care
,
68
(
5
), pp.
1257
1263
.
4.
Teland
,
J.
,
Hamberger
,
A.
,
Huseby
,
M.
,
Saljo
,
A.
, and
Svinsas
,
E.
, 2010, “
Numerical Simulation of Mechanisms of Blast-Induced Traumatic Brain Injury
,”
Proc. Meet. Acoust.
,
9
(
1
), pp.
020004
0020004
.
5.
Moore
,
D. F.
, Jé
rusalem
,
A.
,
Nyein
,
M.
,
Noels
,
L.
,
Jaffee
,
M. S.
, and
Radovitzky
,
R. A.
, 2009, “
Computational Biology — Modeling of Primary Blast Effects on the Central Nervous System
,”
Neuroimage
,
47
(
2
), pp.
T10
T20
.
6.
Moss
,
W. C.
,
King
,
M. J.
, and
Blackman
,
E. G.
, 2009, “
Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design
,”
Phys. Rev. Lett.
,
103
(
108702
), pp.
4
8
.
7.
Taylor
,
P.
, and
Ford
,
C.
, 2009, “
Simulation of Blast-Induced Early-Time Intracranial Wave Physics Leading to Traumatic Brain Injury
,”
J. Biomech. Eng.
,
131
(
6
), pp.
061007
-1–061007-
11
.
8.
Krysl
,
P.
,
Cranford
,
T. W.
, and
Hildebrand
,
J. A.
, 2008, “
Lagrangian Finite Element Treatment of Transient Vibration/Acoustics of Biosolids Immersed in Fluids
,”
Int. J. Numer. Eng.
,
74
(
5
), pp.
754
775
.
9.
Cranford
,
T. W.
,
Krysl
,
P.
, and
Hildebrand
,
J. A.
, 2008, “
Acoustic Pathways Revealed: Simulated Sound Transmission and Reception in Cuvier’s Beaked Whale (Ziphius Cavirostris)
,”
Bioinsp. Biomim.
,
3
, pp.
1
10
.
10.
Taylor
,
R. L.
,
Beresford
,
P. J.
, and
Wilson
,
E. L.
, 1976, “
Non-Conforming Element for Stress Analysis
,”
Int. J. Numer. Meth. Eng.
,
10
(
6
), pp.
1211
1219
.
11.
Kwan
,
R.
K.-S.,
Evans
,
A. C.
, and
Pike
,
G. B.
, 1996, , “
An Extensible Mri Simulator for Post-Processing Evaluation, Visualization in Biomedical Computing
,”
Lecture Notes in Computer Science
,
Springer-Verlag
,
New York
.
12.
Cocosco
,
C. A.
,
Kollokian
,
V.
,
Kwan
,
R. K. -S. K.-S.
, and
Evans
,
A. C.
, 1997, “
Brainweb: Online Interface to a 3d Mri Simulated Brain Database
,”
Neuroimage
,
5
(
4
), pp.
S425
425
.
13.
Levin
,
H. S.
,
Wilde
,
E.
,
Troyanskaya
,
M.
,
Petersen
,
N.
,
Scheibel
,
R.
,
Radaideh
,
M.
,
Wu
,
T.
,
Yallampalli
,
R.
,
Chu
,
Z.
, and
Li
,
X.
, 2010, “
Diffusion Tensor Imaging of Mild to Moderate Blast-Related Traumatic Brain Injury and Its Sequelae
,”
J Neurotrauma
,
27
, pp.
683
695
.
14.
Margulies
,
S. S.
, and
Thibault
,
L. E.
, 1992, “
A Proposed Tolerance Criterion for Diffuse Axonal Injury in Man
,”
J. Biomechanics
,
25
(
8
), pp.
917
923
.
15.
Donnelly
,
B. R.
, and
Medige
,
J.
, 1997, “
Shear Properties of Human Brain Tissue
,”
J. Biomech. Eng.
,
119
(
4
), pp.
423
433
.
16.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
J. Biomech. Eng.
,
124
, pp.
244
252
.
17.
Shattuck
,
D. W.
, and
Leahy
,
R. M.
, 2001, “
Automated Graph-Based Analysis and Correction of Cortical Volume Topology
,”
IEEE Trans. Med. Imaging
,
20
(
11
), pp.
1167
1177
.
18.
Stenfelt
,
S.
,
Håkansson
,
B.
, and
Tjellström
,
A.
, 2000, “
Vibration Characteristics of Bone Conducted Sound in vitro
,”
J. Acoust. Soc. Am.
,
107
(
1
), pp.
422
431
.
19.
Saraf
,
H.
,
Ramesh
,
K.
,
Lennon
,
A.
,
Merkle
,
A.
, and
Roberts
,
J.
, 2007, “
Mechanical Properties of Soft Human Tissues under Dynamic Loading.
,”
J. Biomech.
,
40
(
9
), pp.
1960
1967
.
20.
Mast
,
T. D.
, 2000, “
Empirical Relationships between Acoustic Parameters in Human Soft Tissues
,”
ARLO
,
1
(
2
), pp.
37
42
.
21.
Green
,
M.
,
Bilston
,
L.
, and
Sinkus
,
R.
, 2008, “
in vivo Brain Viscoelastic Properties Measured by Magnetic Resonance Elastography
,”
NMR Biomed.
,
21
, pp.
755
764
.
22.
Subramaniam
,
K. V.
,
Nian
,
W.
, and
Andreopoulos
,
Y.
, 2009, “
Blast Response Simulation of an Elastic Structure: Evaluation of the Fluid–Structure Interaction Effect
,”
Int. J. Impact Eng.
,
36
, pp.
965
974
.
23.
Moore
,
D. F.
, and
Jaffee
,
M. S.
, 2010, “
Military Traumatic Brain Injury and Blast
,”
NeuroRehabilitation
,
26
(
3
), pp.
179
181
.
24.
Taber
,
K. H.
,
Warden
,
D. L.
, and
Hurley
,
R. A.
, 2006, “
Blast-Related Traumatic Brain Injury: What Is Known?
J. Neuropsychiatry Clin. Neurosci.
,
18
(
2
), pp.
141
145
.
25.
Kumar
,
R. R.
, and
Gupta
,
K.
, 2009, “
Comparative Evaluation of Corpus Callosum Dti Metrics in Acute Mild and Moderate Traumatic Brain Injury: Its Correlation with Neuropsychometric Tests
,”
Brain Inj.
,
23
(
7
), pp.
675
685
.
26.
Kraus
,
M. F.
, and
Susmaras
,
T.
, 2007, “
White Matter Integrity and Cognition in Chornic Traumatic Brain Injury: A Diffusion Tensor Imaging Study
,”
Brain
,
130
, pp.
2508
2519
.
27.
Wilde
,
E. A.
,
Chu
,
Z.
,
Bigler
,
E. D.
,
Hunter
,
J. V.
,
Fearing
,
M. A.
,
Hanten
,
G.
,
Newsome
,
M. R.
,
Scheibel
,
R. S.
,
Li
,
X.
, and
Levin
,
H.S.
, 2006, “
Diffusion Tensor Imaging in the Corpus Callosum in Children after Moderate to Severe Traumatic Brain Injury
,”
J. Neurotrauma
,
23
(
10
), pp.
1412
1426
.
28.
Wahl
,
M.
, and
Ziemann
,
U.
, 2005, “
The Human Motor Corpus Callosum
,”
Rev. Neurosci.
,
19
(
6
), pp.
451
466
.
29.
Bloom
,
J.
, and
Hynd
,
G.
, 2005, “
The Role of the Corpus Callosum in Interhemispheric Transfer of Information: Excitation or Inhibition?
Neuropsychol. Rev.
,
15
(
2
), pp.
59
71
.
30.
Grujicic
,
M.
,
Bell
,
W. C.
,
Pandurangan
,
B.
, and
Glomski
,
P. S.
, 2011, “
Fluid/Structure Interaction Computational Investigation of Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet
,”
J. Mater. Eng. Perform.
,
20
(
6
), pp.
877
893
.
31.
El Sayed
,
T.
,
Mota
,
A.
,
Fraternali
,
F.
, and
Ortiz
,
M.
, 2008, “
Biomechanics of Traumatic Brain Injury
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
4692
4701
.
32.
Mendis
,
K. K.
,
Stalnaker
,
R. K.
, and
Advani
,
S. H.
, 1995, “
A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue
,”
ASME J. Biomech. Eng.
,
117
, pp.
279
285
.
33.
Nishimoto
,
T.
, and
Murakami
,
S.
, 1998, “
Relation between Diffuse Axonal Injury and Internal Head Structures on Blunt Impact
,”
J. Biomech. Eng.
,
120
, pp.
140
147
.
34.
Bradshaw
,
D. R.
,
Ivarsson
,
J.
,
Morfey
,
C. L.
, and
Viano
,
D. C.
, 2001, “
Simulation of Acute Subdural Hematoma and Diffuse Axonal Injury in Coronal Head Impact
,”
J. Biomech.
,
34
(
1
), pp.
85
94
.
35.
Chafi
,
M. S.
,
Karami
,
G.
, and
Ziejewski
,
M.
, 2010, “
Biomechanical Assessment of Brain Dynamic Responses Due to Blast Pressure Waves
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
490
504
.
36.
Bain
,
A. C.
, and
Meaney
,
D. F.
, 2000, “
Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury
,”
J. Biomech. Eng.
,
122
(
6
), pp.
615
622
.
You do not currently have access to this content.