In this paper we use the fractional stochastic integral given by Carmona et al. (2003, “Stochastic Integration With Respect to Fractional Brownian Motion,” Ann. I.H.P. Probab. Stat., 39(1), pp. 27–68) to study a delayed logistic equation driven by fractional Brownian motion which is a generalization of the classical delayed logistic equation. We introduce an approximate method to find the explicit expression for the solution. Our proposed method can also be applied to the other models and to illustrate this, two models in physiology are discussed.

References

References
1.
Verhulst
,
P. F.
, 1838, “
Notice Sur la Loi que la Population Suit dans son Accroissement
,”
Correspondence Math. Phys.
,
10
, pp.
113
121
.
2.
Hutchinson
,
G. E.
, 1948, “
Circular Causal Systems in Ecology
,”
Ann. N.Y. Acad. Sci.
,
50
, pp.
221
246
.
3.
Alvarez
,
L.
and
Shepp
,
L.
, 1998, “
Optimal Harvesting of Stochastically Fluctuating Populations
,”
J. Math. Biol.
,
37
, pp.
155
177
.
4.
Guillouzic
,
S.
,
L’Heureux
,
I.
, and
Longtin
,
A.
, 1999, “
Small Delay Approximation of Stochastic Delay Differential Equations
,”
Phys. Rev. E
,
59
, pp.
3970
3982
.
5.
Bassingthwaighte
,
J. B.
,
Liebovitch
,
L. S.
, and
West
,
B. J.
, 1994, “
Fractal Physiology
,”
Methods in Physiology
, Vol.
2
,
American Physiological Society
/
Oxford
.
6.
Losa
,
G. A.
,
Merlini
,
D.
,
Nonnenmacher
,
T. F.
, and
Weibel
,
E. R.
, 2005,
Fractals in Biology and Medicine: Volume IV (Mathematics and Biosciences in Interaction
),
Birkhäuser Verlag
,
Basel, Switzerland
.
7.
Dung
,
N. T.
, 2008, “
A Class of Fractional Stochastic Differential Equations
,”
Vietnam J. Math.
,
36
(
3
), pp.
271
279
.
8.
Carmona
,
P.
,
Coutin
,
L.
, and
Montseny
,
G.
, 2003, “
Stochastic Integration With Respect to Fractional Brownian Motion
,”
Ann. I.H.P. Probab. Stat.
,
39
(
1
), pp.
27
68
.
9.
Ferrante
,
M.
and
Rovira
,
C.
, 2006, “
Stochastic Delay Differential Equations Driven by Fractional Brownian Motion With Hurst Parameter H>12
,.
Bernoulli
,
12
(
1
), pp.
85
100
.
10.
Ferrante
,
M.
and
Rovira
,
C.
, 2010, “
Convergence of Delay Differential Equations Driven by Fractional Brownian Motion
,”
J. Evol. Equ.
,
10
(
4
), pp.
761
783
.
11.
Dung
,
N. T.
, 2011, “
Semimartingale Approximation of Fractional Brownian Motion and its Applications
,”
Comput. Math. Appl.
,
61
, pp.
1844
1854
.
12.
Thao
,
T. H.
, 2006, “
An Approximate Approach to Fractional Analysis for Finance
,”
Nonlinear Anal.: Real World Appl.
,
7
, pp.
124
132
.
13.
Coutin
,
L.
, 2007, “
An Introduction to Stochastic Calculus with Respect to Fractional Brownian Motion
,”
Séminaire de Probabilités XL Springer-Verlag
,
Berlin
,
Heidelberg
, pp.
3
65
.
14.
Nualart
,
D.
, 2006,
The Malliavin Calculus and Related Topics
,
2nd ed.
,
Springer
,
New York
.
15.
Dung
,
N. T.
and
Thao
,
T. H.
, 2010, “
An Approximate Approach to Fractional Stochastic Integration and Its Applications
,”
Braz. J. Probab. Stat.
,
24
(
1
), pp.
57
67
.
16.
Mackey
,
M. C.
and
Glass
,
L.
, 1977, “
Oscillations and Chaos in Physiological Control Systems
,”
Science
,
197
, pp.
287
289
.
You do not currently have access to this content.