In this work, Galerkin approximations are developed for a system of n first order nonlinear delay differential equations (DDEs) and also for an nth order nonlinear scalar DDE. The DDEs are converted into an equivalent system of partial differential equations of the same order along with the nonlinear boundary constraints. Lagrange multipliers are then introduced and explicit expressions for the Lagrange multipliers are derived to enforce the nonlinear boundary constraints. To illustrate the method, comparisons are made between the numerical solution of nonlinear DDEs and its Galerkin approximations for different parameter values.

References

References
1.
Kuang
,
Y.
, 1993,
Delay Differential Equations: With Applications in Population Dynamics
,
Academic
,
Boston
.
2.
Bocharov
,
G.
,
and
Rihan
,
F.
, 2000, “
Numerical Modelling in Biosciences Using Delay Differential Equations
,”
J. Comput. Appl. Math.
,
125
(
1–2
), pp.
183
199
.
3.
Richard
,
J.
, 2003, “
Time-Delay Systems: An Overview of Some Recent Advances and Open Problems
,”
Automatica
,
39
(
10
), pp.
1667
1694
.
4.
Insperger
,
T.
and
Stépán
,
G.
, 2004, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(
1
), pp.
117
141
.
5.
Insperger
,
T.
and
Stepan
,
G.
, 2000, “
Stability of the Milling Process
,”
Period. Polytech., Mech. Eng.-Mashinostr.
,
44
(
1
), pp.
47
57
.
6.
Balachandran
,
B.
, 2001, “
Nonlinear Dynamics of Milling Processes
,”
Philos. Trans. R. Soc. London, Ser. A
,
359
(1781), pp.
793
819
.
7.
Driver
,
R.
, 1977,
Ordinary and Delay Differential Equations
,
Springer-Verlag
,
Berlin
.
8.
Bellen
,
A.
and
Zennaro
,
M.
, 2003,
Numerical Methods for Delay Differential Equations
,
Oxford University Press
,
New York
.
9.
Shampine
,
L.
and
Thompson
,
S.
, 2000, “
Solving Delay Differential Equations with dde23
,” http://www. runet. edu/∼ thompson/ webddes/tutorial. pdfhttp://www. runet. edu/∼ thompson/ webddes/tutorial. pdf.
10.
Koto
,
T.
, 2004, “
Method of Lines Approximations of Delay Differential Equations
,”
Comput. Math. Appl.
,
48
(
1-2
), pp.
45
59
.
11.
Maset
,
S.
, 2003, “
Numerical Solution of Retarded Functional Differential Equations as Abstract Cauchy Problems
,”
J. Comput. Appl. Math.
,
161
(
2
), pp.
259
282
.
12.
Smith
,
G.
, 1985,
Numerical Solution of Partial Differential Equations: Finite Difference Methods
,
Oxford University Press
,
New York
.
13.
Ames
,
W.
, 1977,
Numerical Methods for Partial Differential Equations
,
Academic
,
New York
.
14.
Nayfeh
,
A.
and
Mook
,
D.
, 1995,
Nonlinear Oscillations
,
Wiley-VCH
,
Berlin
.
15.
Wahi
,
P.
and
Chatterjee
,
A.
, 2005, “
Galerkin Projections for Delay Differential Equations
,”
ASME. J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
80
87
.
16.
Govaerts
,
W.
, 2000,
Numerical Methods for Bifurcations of Dynamical Equilibria
,
Society for Industrial Mathematics
.
17.
Dhooge
,
A.
,
Govaerts
,
W.
, and
Kuznetsov
,
Y.
, 2003, “
Matcont: A Matlab Package for Numerical Bifurcation Analysis of ODEs
,”
ACM Trans. Math. Softw.
,
29
(
2
), pp.
141
164
.
18.
Nayfeh
,
A.
, 1973,
Perturbation Methods
, Vol.
6
,
Wiley Online Library
.
19.
Khalil
,
H.
and
Grizzle
,
J.
, 2002,
Nonlinear Systems,
Prentice-Hall
,
Englewood Cliffs, NJ
.
20.
Gu
,
K.
and
Niculescu
,
S.
, 2003, “
Survey on Recent Results in the Stability and Control of Time-Delay Systems
,”
ASME. J. Dyn. Syst., Meas., Control
,
125
, p.
158
.
21.
Ghosh
,
D.
,
Saha
,
P.
, and
Roy Chowdhury
,
A.
, 2007, “
On Synchronization of a Forced Delay Dynamical System Via the Galerkin Approximation
,”
Commun. Nonlinear Sci. Num. Sim.
,
12
(
6
), pp.
928
941
.
22.
de Jesus Kozakevicius
,
A.
and
Kalmár-Nagy
,
T.
, 2010, “
Weak Formulation for Delay Equations
,” 9th Brazilian Conference on Dynamics, Control and Their Applications.
23.
You do not currently have access to this content.