In order to compensate for the loss of performance when scaling resonant sensors down to NEMS, a complete analytical model, including all main sources of nonlinearities, is presented as a predictive tool for the dynamic behavior of clamped-clamped nanoresonators electrostatically actuated. The nonlinear dynamics of such NEMS under superharmonic resonance of an order half their fundamental natural frequencies is investigated. It is shown that the critical amplitude has the same dependence on the quality factor Q and the thickness h as the case of the primary resonance. Finally, a way to retard the pull-in by decreasing the AC voltage is proposed in order to enhance the performance of NEMS resonators.

References

References
1.
Feng
,
X. L.
, 2007, “
Phase Noise and Frequency Stability of Very-High Frequency Silicon Nanowire Nanomechanical Resonators
,” Proceedings of 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp.
327
330
.
2.
Robins
,
W. P.
, 1984,
Phase Noise in Signal Sources
,
Institution of Engineering and Technology
,
London
.
3.
Roessig
,
T. A.
,
Howe
,
R. T.
, and
Pisano
,
A. P.
, 1997, “
Nonlinear Mixing in Surface-Micromachined Tuning Fork Oscillators
,” Proceedings of the 1997 IEEE International Frequency Control Symposium, pp.
778
782
.
4.
Kaajakari
,
V.
,
Koskinen
,
J. K.
, and
Mattila
,
T.
, 2005. “
Phase Noise in Capacitively Coupled Micromechanical Oscillators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
52
(
12
), pp.
2322
2331
.
5.
Kacem
,
N.
,
Hentz
,
S.
,
Fontaine
,
H.
,
Nguyen
,
V.
,
Robert
,
P.
,
Legrand
,
B.
, and
Buchaillot
,
L.
, 2008, “
From MEMS to NEMS: Modelling and Characterization of the Nonlinear Dynamics of Resonators: A Way to Enhance the Dynamic Range
,” Proceedings of the International Conference of Nanotechnology, Boston, MA.
6.
Postma
,
H. W. C.
,
Kozinsky
,
I.
,
Husain
,
A.
, and
Roukes
,
M. L.
, 2005, “
Dynamic Range of Nanotube- and Nanowire-Based Electromechanical Systems
,”
Appl. Phys. Lett.
,
86
(
22
),
223105
.
7.
Kacem
,
N.
,
Hentz
,
S.
,
Pinto
,
D.
,
Reig
,
B.
, and
Nguyen
,
V.
, 2009. “
Nonlinear Dynamics of Nanomechanical Beam Resonators: Improving the Performance of NEMS-Based Sensors
,”
Nanotechnology
,
20
(
27
),
275501
.
8.
Kacem
,
N.
,
Arcamone
,
J.
,
Perez-Murano
,
F.
, and
Hentz
,
S.
, 2010, “
Dynamic Range Enhancement of Nonlinear Nanomechanical Resonant Cantilevers for Highly Sensitive NEMS Gas/Mass Sensor Applications
,”
J. Micromech. Microeng.
,
20
(
4
),
045023
.
9.
Kacem
,
N
, and
Hentz
,
S.
, 2009, “
Bifurcation Topology Tuning of a Mixed Behavior in Nonlinear Micromechanical Resonators
,”
Appl. Phys. Lett.
,
95
(
18
),
183104
.
10.
Kacem
,
N.
,
Baguet
,
S.
,
Hentz
,
S.
, and
Dufour
,
R.
, 2010, “
Nonlinear Phenomena in Nanomechanical Resonators: Mechanical Behaviors and Physical Limitations
,”
Mécanique Industries
,
11
(
6
), pp.
521
529
.
11.
Jin
,
Z.
, and
Wang
,
Y.
, 1998, “
Electrostatic Resonator With Second Superharmonic Resonance
,”
Sens. Actuators, A
,
64
(
3
), pp.
273
279
.
12.
Turner
,
K. L.
,
Miller
,
S. A.
,
Hartwell
,
P. G.
,
MacDonald
,
N. C.
,
Strogatz
,
H. S.
, and
Adams
,
S. G.
, 1998, “
Five Parametric Resonances in a Microelectromechanical System
,”
Nature
,
396
, pp.
149
152
.
13.
Rugar
,
D.
, and
Grütter
,
P.
, 1991, “
Mechanical Parametric Amplification and Thermomechanical Noise Squeezing
,”
Phys. Rev. Lett.
,
67
(
6
), pp.
699
702
.
14.
Carr
,
D. W.
,
Evoy
,
S.
,
Sekaric
,
L.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
, 2000, “
Parametric Amplification in a Torsional Microresonator
,”
Appl. Phys. Lett.
,
77
(
10
), pp.
1545
1547
.
15.
Carr
,
D. W.
,
Evoy
,
S.
,
Sekaric
,
L.
,
Craighead
,
H. G.
, and
Parpia
,
J. M.
, 1999, “
Measurement of Mechanical Resonance and Losses in Nanometer Scale Silicon Wires
,”
Appl. Phys. Lett.
,
75
(
7
), pp.
920
922
.
16.
Younis
,
M.
, and
Nayfeh
,
A. H.
, 2003, “
A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation
,”
Nonlinear Dyn.
,
31
(
1
), pp.
91
117
.
17.
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2003, “
Secondary Resonances of Electrically Actuated Resonant Microsensors
,”
J. Micromech. Microeng.
,
13
(
3
), pp.
491
501
.
18.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
, 2004, “
Global Dynamics of MEMS Resonators Under Superharmonic Excitation
,” Proceedings of the International Conference on MEMS, NANO, and Smart Systems (ICMENS), Banff, Canada, pp.
694
699
.
19.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2005, “
Dynamics of MEMS Resonators Under Superharmonic and Subharmonic Excitations
,”
J. Micromech. Microeng.
,
15
(
10
), pp.
1840
1847
.
20.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
, 2007, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
,
48
, pp.
153
163
.
21.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
, 1986,
Theory of Elasticity
,
Butterworth-Heinemann
,
Oxford, UK
.
22.
Nishiyama
,
H.
, and
Nakamura
,
M.
, 1990, “
Capacitance of a Strip Capacitor
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
(
2
), pp.
417
423
.
23.
Touzé
,
C.
, and
Thomas
,
O.
, 2006, “
Non-Linear Behaviour of Free-Edge Shallow Spherical Shells: Effect of the Geometry
,”
Int. J. Non-Linear Mech.
,
41
(
5
), pp.
678
692
.
24.
Kacem
,
N.
,
Baguet
,
S.
,
Hentz
,
S.
, and
Dufour
,
R.
, 2011, “
Computational and Quasi-Analytical Models for Non-Linear Vibrations of Resonant MEMS and NEMS Sensors
,”
Int. J. Non-Linear Mech.
,
46
(
3
), pp.
532
542
.
25.
Belhaq
,
M.
, and
Fahsi
,
A.
, 2008, “
2:1 and 1:1 Frequency-Locking in Fast Excited van der Pol-Mathieu-Duffing Oscillator
,”
Nonlinear Dyn.
,
53
, pp.
139
152
.
26.
Nayfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
,
Wiley
,
New York
.
27.
Yurke
,
B.
,
Greywall
,
D. S.
,
Pargellis
,
A. N.
, and
Busch
,
P. A.
, 1995, “
Theory of Amplifier-Noise Evasion in an Oscillator Employing a Nonlinear Resonator
,”
Phys. Rev. A
,
51
(
5
), pp.
4211
4229
.
28.
Shao
,
L. C.
,
Palaniapan
,
M.
, and
Tan
,
W. W.
, 2008, “
The Nonlinearity Cancellation Phenomenon in Micromechanical Resonators
,”
J. Micromech. Microeng.
,
18
(
6
),
065014
.
29.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A.
, 2003, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.
30.
Krylov
,
S.
, and
Maimon
,
R.
, 2004, “
Pull-In Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force
,”
J. Vibr. Acoust.
,
126
(
3
), pp.
332
342
.
31.
De
,
S. K.
, and
Aluru
,
N. R.
, 2004, “
Full-Lagrangian Schemes for Dynamic Analysis of Electrostatic MEMS
,”
J. Microelectromech. Syst.
,
13
(
5
), pp.
737
758
.
32.
Elata
,
D.
, and
Bamberger
,
H.
, 2006, “
On the Dynamic Pull-In of Electrostatic Actuators With Multiple Degrees of Freedom and Multiple Voltage Sources
,”
J. Microelectromech. Syst.
,
15
(
1
), pp.
131
140
.
33.
Fargas-Marques
,
A.
,
Casals-Terre
,
J.
, and
Shkel
,
A. M.
, 2007, “
Resonant Pull-In Condition in Parallel-Plate Electrostatic Actuators
,”
J. Microelectromech. Syst.
,
16
(
5
), pp.
1044
1053
.
34.
Ashhab
,
M.
,
Salapaka
,
M. V.
,
Dahleh
,
M.
, and
Mezic
,
I.
, 1999, “
Melnikov-Based Dynamical Analysis of Microcantilevers in Scanning Probe Microscopy
,”
Nonlinear Dyn.
,
20
(
24
), pp.
197
220
.
35.
Basso
,
M.
,
Giarre
,
L.
,
Dahleh
,
M.
, and
Mezic
,
I.
, 2000, “
Complex Dynamics in a Harmonically Excited Lennard-Jones Oscillator: Microcantilever-Sample Interaction in Scanning Probe Microscopes
,”
J. Dyn. Syst., Meas., Control
,
122
(
1
), pp.
240
245
.
36.
Gottwald
,
J. A.
,
Virgin
,
L. N.
, and
Dowell
,
E. H.
, 1995, “
Routes to Escape From an Energy Well
,”
J. Sound Vib.
,
187
(
1
), pp.
133
144
.
37.
Seeger
,
J. I.
, and
Crary
,
S. B.
, 1997, “
Stabilization of Electrostatically Actuated Mechanical Devices
,” Proceedings of the International Conference on Solid State Sensors and Actuators,
2
, pp.
1133
1136
.
38.
Chu
,
P. B.
, and
Pister
,
S. J.
, 1994, “
Analysis of Closed-Loop Control of Parallel-Plate Electrostatic Microgrippers
,” Proceedings of the IEEE International Conference on Robotics and Automation,
1
, pp.
820
825
.
You do not currently have access to this content.