The problem of local linearizability of the planar linear center perturbed by cubic non- linearities in all generalities on the system parameters (14 parameters) is far from being solved. The synchronization problem (as noted in Pikovsky, A., Rosenblum, M., and Kurths, J., 2003, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, Cambridge University Press, UK, and Blekhman, I. I., 1988, Synchronisation in Science and Technology, ASME Press Translations, New York) consists in bringing appropriate modifications on a given system to obtain a desired dynamic. The desired phase portrait along this paper contains a compact region around a singular point at the origin in which lie periodic orbits with the same period (independently from the chosen initial conditions). In this paper, starting from a five parameters non isochronous Chouikha cubic system (Chouikha, A. R., 2007, “Isochronous Centers of Lienard Type Equations and Applications,” J. Math. Anal. Appl., 331, pp. 358–376) we identify all possible monomial perturbations of degree d ∈ {2, 3} insuring local linearizability of the perturbed system. The necessary conditions are obtained by the Normal Forms method. These conditions are real algebraic equations (multivariate polynomials) in the parameters of the studied ordinary differential system. The efficient algorithm FGb (J. C. Faugère, “FGb Salsa Software,” http://fgbrs.lip6.fr) for computing the Gröbner basis is used. For the family studied in this paper, an exhaustive list of possible parameters values insuring local linearizability is established. All the found cases are already known in the literature but the contexts are different since our object is the synchronisation rather than the classification. This paper can be seen as a direct continuation of several new works concerned with the hinting of cubic isochronous centers, (in particular Bardet, M., and Boussaada, I., 2011, “Compexity Reduction of C-algorithm,” App. Math. Comp., in press; Boussaada, I., Chouikha, A. R., and Strelcyn, J.-M., 2011, “Isochronicity Conditions for some Planar Polynomial Systems,” Bull. Sci. Math, 135(1), pp. 89–112; Bardet, M., Boussaada, I., Chouikha, A. R., and Strelcyn, J.-M., 2011, “Isochronicity Conditions for some Planar Polynomial Systems,” Bull. Sci. Math, 135(2), pp. 230–249; and furthermore, it can be considered as an adaptation of a qualitative theory method to a synchronization problem.

References

References
1.
Chavarriga
,
J.
, and
Sabatini
,
M.
, 1999, “
A Survey of Isochronous Centers
,”
Qual. Theory Dyn. Syst.
,
1
, pp.
1
70
.
2.
Françoise
,
J.-P.
, 2005, “
Isochronous Systems and Perturbation Theory
,”
J. Nonlinear Math. Phys.
,
12
, p.
315326
.doi:
3.
Chouikha
,
A. R.
, 2007, “
Isochronous Centers of Lienard Type Equations and Applications
,”
J. Math. Anal. Appl.
,
331
, pp.
358
376
.
4.
Bardet, M., and Boussaada, I., 2011, “Compexity Reduction of C-algorithm,” App. Math. Comp., 217
(17)
, pp.
7318
7323
.
5.
Boussaada
,
I.
,
Chouikha
,
A. R.
, and
Strelcyn
,
J.-M.
, 2011, “
Isochronicity Conditions for some Planar Polynomial Systems
,”
Bull. Sci. Math
,
135
(
1
), pp.
89
112
.
6.
Bardet
,
M.
,
Boussaada
,
I.
,
Chouikha
,
A. R.
, and
Strelcyn
,
J.-M.
, 2011, “
Isochronicity Conditions for some Planar Polynomial Systems
,”
Bull. Sci. Math
,
135
(
2
), pp.
230
249
.
7.
Pikovsky
,
A.
,
Rosenblum
,
M.
, and
Kurths
,
J.
, 2003,
Synchronization: A Universal Concept in Nonlinear Sciences
,
Cambridge Nonlinear Science Series, Cambridge University Press
,
UK
.
8.
Blekhman
,
I. I.
, 1988,
Synchronisation in Science and Technology
,
ASME Press Translations
,
New York
.
9.
Sabatini
,
M.
, 2004, “
On the Period Function of +f(x)x'2+g(x)=0
,
J. Diff. Eq.
,
196
(
1
), pp.
151
168
.
10.
Chouikha
,
A. R.
,
Romanovski
,
V. G.
, and
Chen
,
X.
, 2007, “
Isochronicity of Analytic Systems via Urabe’s Criterion
,”
J. Phys. A
,
40
(
10
), pp.
2313
2327
.
11.
Guckenheimer
,
J.
, and
Holmes
,
P.
, 2002,
Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields
,
Springer
,
New York
.
12.
Pleshkan
,
I. I.
, 1969, “
A New Method of Investigating the Isochronicity of a System of Two Differential Equations
,”
Differ. Eq.
,
5
, pp.
796
802
.
13.
Algaba
,
A.
,
Freire
,
E.
, and
Gamero
,
E.
, 2000, “
Isochronicity via Normal Form
,”
Qual. Theory Dyn. Syst.
,
1
, pp.
133
156
.
14.
Yu
,
P.
, and
Leung
,
A. Y. T.
, 2007, “
Normal Forms of Vector Field with Perturbation Parameters and their Application
,”
Chaos, Solitons Fractals
,
34
, pp.
564
579
.
15.
Yu
,
P.
, and
Bi
,
Q.
, 1999, “
Symbolic Computation of Normal Forms for Semi-Simple Case
,”
J. Comput. Appl. Math.
,
102
, pp.
195
220
.
16.
Yu
,
P.
, 1998, “
Computation of Normal Forms via a Perturbation Technique
,”
J. Sound Vib.
,
211
, pp.
19
38
.
17.
J. C.
Faugère
, “FGb Salsa Software,” http://fgbrs.lip6.frhttp://fgbrs.lip6.fr
18.
Becker
,
T.
, and
Weispfenning
,
V.
, 1993,
Gröbner Bases
,
Springer-Verlag
,
Berlin
.
19.
Chen
,
X.
, and
Romanovski
,
V. G.
, 2010, “
Linearizability Conditions of Time-Reversible Cubic Systems
,”
J. Math. Anal. Appl.
,
362
(
2
), pp.
438
449
.
20.
Garcia
,
I.
, 2000, “Contribution to the qualitative study of planar vector fields,” Ph.D. thesis, Dept. de Matematica, University of Lleida, Spain.
21.
Mardesić
,
P.
,
Rousseau
,
C.
, and
Toni
,
B.
, 1995, “
Linearization of Isochronous Centers
,”
J. Differ. Eq.
,
121
, pp.
67
108
.
22.
Chouikha
,
A. R.
, 2005, “
Monotonicity of the Period Function for some Planar Differential Systems. Part II: Liénard and Related Systems
,”
Applicationes Mathematicae
,
32
(
4
), pp.
405
424
.
23.
Christopher
,
C.
, and
Devlin
,
J.
, 2004, “
On the Classification of Lienard Systems with Amplitude-Independent Periods
,”
J. Differ. Eq.
,
200
, pp.
1
17
.
24.
Sabatini
,
M.
, 1999, “
On the Period Function of Lienard Systems
,”
J. Differ. Eq.
,
152
, pp.
467
487
.
You do not currently have access to this content.