A constructive algorithm using Chebyshev spectral collocation is proposed for computing trustworthy approximate solutions of linear and weakly nonlinear delayed partial differential equations or initial boundary value problems, with continuous and bounded coefficients. The boundary conditions are assumed to be Dirichlet. The solution of linear problems is obtained at Chebyshev grid points in space and a given interval of time. The algorithm is then extended to systems with weak nonlinearities using perturbation series, which yields nonhomogeneous initial boundary value problems without delay. The proposed methodology is illustrated using examples of linear and weakly nonlinear heat and wave equations with bounded continuous space-time varying coefficients.

References

1.
Balachandran
,
B.
, 2001,
“Nonlinear Dynamics of Milling Processes,”
Philos. Trans. R. Soc. London, Ser. A
,
359
,
793
819
.
2.
Stepan
,
G.
, 1997,
“Delay Differential Equation Models for Machine Tool Chatter,”
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
,
New York
, pp.
165
191
.
3.
Volz
,
R.
, 1982,
“Global Asymptotic Stability of a Periodic Solution to an Epidemic Model,”
J. Math. Biol.
,
15
,
319
338
.
4.
Levine
,
H. A.
,
Pamuk
,
S.
,
Sleeman
B. D.
, and
Nilsen-Hamilton
,
M.
, 2001,
“Mathematical Modeling of Capillary Formation and Development in Tumor Angiogenesis: Penetration into the Stroma,”
Bull. Math. Biol.
,
63
,
801
863
.
5.
Nagilla
,
R.
, GlaxoSmithKline, Investigator, DMPK, Pattern Recognition Receptor DPU, Immuno-Inflammation CEDD, Collegeville, PA.
6.
Armaou
,
A.
, and
Christofides
,
P. D.
, 1999,
“Robust Output Feedback Control of Parabolic PDE Systems With Time Dependent Spatial Domains,”
Proceedings of the American Control Conference
,
San Diego
, pp.
1727
1733
.
7.
Mead
,
J.
, and
Zubik-Kowal
,
B.
, 2005,
“An Iterated Pseudospectral Method for Delay Partial Differential Equations,”
Appl. Numer. Math.
,
55
,
227
250
.
8.
Jackiewicz
,
Z.
, and
Zubik-Kowal
,
B.
, 2006,
“Spectral Collocation and Waveform Relaxation Methods for Nonlinear Delay Partial Differential Equations,”
Appl. Numer. Math.
,
56
,
433
443
.
9.
Breda
,
D.
,
Maset
,
S.
, and
Vermiglio
,
R.
, 2010,
“Computation of Asymptotic Stability for a Class of Partial Differential Equations With Delay,”
J. Vib. Contr.
,
16
,
1005
1022
.
10.
Shampine
,
L. F.
, and
Thomson
,
F.
, 2001,
“Solving DDEs in MATLAB,”
Appl. Numer. Math.
37
,
441
458
.
11.
Deshmukh
,
V.
,
Butcher
,
E. A.
, and
Bueler
,
E.
, 2008, “
Dimensional Reduction of Nonlinear Delay Differential Equations With Periodic Coefficients Using Chebyshev Spectral Collocation
,”
Nonlin. Dyn.
52
, pp.
137
149
.
12.
Deshmukh
,
V.
, 2008,
“Spectral Collocation-Based Optimization in Parameter Estimation for Nonlinear Time-Varying Dynamical Systems,”
J. Comput. Nonlin. Dyn.
3
,
011010
(2008).
13.
Trefethen
,
L. N.
, 2000, Spectral Methods in MATLAB, Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
14.
Nayfeh
,
A. H.
, 1981,
Introduction to Perturbation Techniques
,
Wiley–Interscience
,
New York
.
15.
Kassam
,
A.-K.
, and
Trefethen
,
L. N.
, 2005,
“Fourth Order Time Stepping for Stiff PDEs,”
SIAM J. Sci. Comput.
,
26
,
1214
1233
.
You do not currently have access to this content.