In this paper, a numerical method is proposed to approximate the solution of the nonlinear damped generalized regularized long-wave (DGRLW) equation with a variable coefficient. The method is based upon Ritz Legendre multiwavelet approximations. The properties of Legendre multiwavelet are first presented. These properties together with the Galerkin method are then utilized to reduce the nonlinear DGRLW equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Issue Section:
Technical Briefs
References
1.
Benjamin
, T. B.
, Bona
, J. L.
, and Mahony
, J. J.
, 1972, “Model Equations for Long Waves in Nonlinear Dispersive Systems
,” Philos. Trans. R. Soc. London, Ser. A
, 272
, pp. 47
–78
.2.
Zhang
, H.
, Wei
, G. M.
, and Gao
, Y. T.
, 2002, “On the General Form of the Benjamin-Bona-Mahony Equation in Fluid Mechanics
,” Czech. J. Phys.
, 52
, pp. 344
–373
.3.
Medeiros
, L. A.
, and Menzela
, G. P.
, 1977, “Existence and Uniqueness for Periodic Solutions of the Benjamin-Bona-Mahony Equation
,” SIAM J. Math. Anal.
8
, pp. 792
–799
.4.
Omrani
, K.
, and Ayadi
, M.
, 2008, “Finite Difference Discretization of the Benjamin-Bona-Mahony-Burgers (BBMB) Equation
,” Numer. Methods Partial Differ. Equ.
, 24
, pp. 239
–248
.5.
Dura
, A.
, and Lopez-Marcos
, M.A.
, 2002, “Numerical Behavior of Stable and Unstable Solitary Waves
,” Appl. Numer. Math.
, 42
, pp. 95
–116
.6.
Achouri
, T.
, Ayadi
, M.
, and Omrani
, K.
, 2009, “A Fully Galerkin Method for the Damped Generalized Regularized Long-Wave (DGRLW) Equation
,” Numer. Methods Partial Differ. Equ.
, 25
(3
), pp. 668
–684
.7.
Omrani
, K.
2006, “The Convergence of the Fully Discrete Galerkin Approximations for the Benjamin-Bona-Mahony (BBM) Equation
,” Appl. Math. Comput.
, 180
, pp. 614
–621
.8.
Kaya
, D.
, and El-Sayed
, S. M.
, 2003, “An Application of the Decomposition Method for the Generalized KdV and RLW Equations
,” Chaos, Solitons Fractals
, 17
, pp. 869
–877
.9.
Achouri
, T.
, and Omrani
, K.
, 2009, “Numerical Solutions for the Damped Generalized Regularized Long-Wave Equation with a Variable Coefficient by Adomian Decomposition Method
,” Commun. Nonlinear Sci. Numer. Simul.
, 14
, pp. 2025
–2033
.10.
Chui
, C. K.
, 1997, Wavelets: A Mathematical Tool for Signal Analysis
, SIAM
, Philadelphia
.11.
Beylkin
, G.
, Coifman
, R.
, and Rokhlin
, V.
, 1991, “Fast Wavelet Transforms and Numerical Algorithms
,” Commun. Pure Appl. Math.
44
, pp.141
–183
.12.
Daubechies
, I.
, 1992, Ten Lectures on Wavelets
(CBMS-NSF Regional Conference Series in Applied Mathematics
), Vol. 61
, SIAM
, Philadelphia
.13.
Yousefi
, S.
, and Razzaghi
, M.
, 2005, “Legendre Wavelets Method for the Nonlinear Volterra Fredholm Integral Equations
,” Math. Comput. Simul.
, 70
, pp. 1
–8
.14.
Banifatemi
, E.
, Razzaghi
, M.
, and Yousefi
, S.
, 2007, “Two-Dimensional Legendre Wavelets Method for the Mixed Volterra-Fredholm Integral Equations
,” J. Vib. Control
, 13
, pp. 1667
–1675
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.